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Abstract. We use an analytic approach to study the susceptibility of the P Low Frequency Instrument radiometers to
various systematic effects. We examine the effects of fluctuations in amplifier gain, in amplifier noise temperature and in the
reference load temperature. We also study the effect of imperfect gain modulation, non-ideal matching of radiometer parameters,
imperfect isolation in the two legs of the radiometer and back-end 1/ f noise. We find that with proper gain modulation 1/ f gain
fluctuations are suppressed, leaving fluctuations in amplifier noise temperature as the main source of 1/ f noise. We estimate that
with a gain modulation factor within ±1% of its ideal value the overall 1/ f knee frequency will be relatively small (<0.1 Hz).
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1. Introduction

P1 is a European Space Agency (ESA) satellite mis-
sion to map spatial anisotropy and polarization in the Cosmic
Microwave Background (CMB) over a wide range of frequen-
cies with an unprecedented combination of sensitivity, angular
resolution, and sky coverage (Bersanelli et al. 1996). Following
the breakthrough of the COBE discovery of CMB anisotropy
(Smoot et al. 1992; Bennett et al. 1996), and the MAP2 satel-
lite launched in June 2001, P will be the third generation
space mission dedicated to CMB observations.

The data gathered by these missions will revolutionise
modern cosmology by a precise determination of the funda-
mental cosmological parameters which govern the present ex-
pansion rate and the average density of the universe, the amount
of dark matter, and the nature of the seed fluctuations from
which all structures in the universe arose (see, e.g., Hu et al.
1997; Scott et al. 1995; White et al. 1994 for recent reviews
on CMB anisotropy) and will provide at the same time full sky
surveys at essentially unexplored frequencies, with fundamen-
tal implications for a large area of problems in astrophysics
(De Zotti et al. 1999).

P consists of a High Frequency Instrument (HFI) and
a Low Frequency Instrument (LFI) observing the sky through
a common telescope. While the MAP radiometers measure
temperature differences between two widely separated regions
of the sky through a pair of symmetric back-to-back tele-
scopes, the P LFI radiometers are designed to measure
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differences between the sky signal and a stable internal cryo-
genic reference load. The LFI scheme takes advantage of the
presence in the focal plane of the HFI front end unit, which is
cooled to approximately 4 K as an intermediate cryo stage for
the 0.1 K bolometer detectors.

The LFI radiometer design is a modified correlation re-
ceiver (Blum 1959; Colvin 1961; Bersanelli et al. 1995), re-
alised with High Electron Mobility Transistor (HEMT) ampli-
fiers at 30, 44, 70 and 100 GHz. The modification is that the
temperature of the reference load can be made significantly dif-
ferent from the sky temperature. To compensate for the offset
(a few K in nominal conditions), a gain modulation factor, r,
is used to null the output signal in order to minimise sensitivity
to RF gain fluctuations and achieve the lowest white and 1/ f
noise in the output.

Obtaining data streams with low 1/ f noise is of primary
importance in order to achieve the LFI scientific objectives.
In fact excessive 1/ f noise would degrade the quality of the
measured data (Janssen et al. 1996) by increasing the effective
rms noise and the uncertainty in the power spectrum at low
multipole values. Such effects can be avoided if the post de-
tection knee frequency fk (i.e. the frequency at which the 1/ f
contribution and the ideal white noise contribution are equal)
is significantly lower than the spacecraft rotation frequency
( fspin ∼ 0.017 Hz). For values of fk greater than fspin it is possi-
ble to mitigate such effects by applying appropriate destriping
and map making algorithms3 to the time ordered data (Maino
et al. 2000).

3 See Burigana et al. (1997), Delabrouille (1998), Maino et al.
(1999), for details about destriping and Doré et al. (2001), Natoli et al.
(2001), for details about map-making algorithms.
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If the knee frequency is sufficiently low (i.e. fk ≤ 0.1 Hz),
with the application of such algorithms it is possible to main-
tain both the increase in rms noise within few % of the white
noise, and the power increase at low multipole values (i.e.
l ≤ 200) at a very low level (∼two order of magnitude less than
the CMB power). If, on the other hand, the knee frequency is
high (i.e. �0.1 Hz) then even after destriping the degradation
of the final sensitivity is of several tens of % and the excess
power at low multipole values is significant (up to the same or-
der of the CMB power for fk ∼ 10 Hz, Bersanelli et al. 2002).
Therefore, careful attention to instrument design, analysis, and
testing is essential in order to achieve a low 1/ f noise knee
frequency.

In this paper, we analyse the most important systematic
effects due to non-ideal behaviour of components in the LFI
radiometer signal chain, and estimate their impact on the post
detection knee frequency. In Sect. 2 we present a general ana-
lytical description of the P-LFI radiometers to derive for-
mulas for the radiometer power output and sensitivity in the
two cases of perfectly balanced and slightly unbalanced ra-
diometer. Here we also show that under quite general assump-
tions, the radiometer sensitivity does not depend on the ref-
erence load temperature. In Sect. 3 we analyse the impact of
various systematic effects on the post-detection knee frequency
showing that with proper gain modulation it is possible to keep
the radiometer 1/ f noise to a very low level also in the presence
of different non-ideal behaviours (e.g., gain and noise temper-
ature imbalance, imperfect gain modulation). For sake of con-
ciseness, we transfer part of the formalism to the Appendices.
Finally, in Sect. 4 we summarise our results and discuss briefly
their implications for Planck observations.

2. Analytic model of LFI pseudo-correlation
radiometers

2.1. Radiometer architecture

In Fig. 1 we show a schematic of the baseline LFI radiome-
ter design. In this design, each feed-horn is connected to a
Radiometer Chain Assembly consisting of an actively-cooled
20 K front-end connected to a 300 K back-end via waveguides.

In the front-end part (see top part of Fig. 2) the radiation en-
tering the feed-horn is separated by an OrthoMode Transducer
(OMT) into two perpendicular linearly polarised components
that propagate independently through two parallel radiometers.
In each radiometer, the sky signal and the signal from a stable
reference load at ∼4 K are coupled to cryogenic low-noise High
Electron Mobility Transistor (HEMT) amplifiers via a 180◦ hy-
brid. One of the two signals then runs through a switch that
applies a phase shift which oscillates between 0 and π at a fre-
quency of 4096 Hz. A second phase switch will be present for
symmetry on the second radiometer leg; this switch will not
introduce any phase shift in the propagating signal. Therefore
it will not be considered in our analysis. The signals are then
recombined by a second 180◦ hybrid coupler, producing an out-
put which is a sequence of signals alternating at twice the phase
switch frequency.
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Fig. 1. Schematic of the Planck LFI radiometer design. Each feed horn
is connected to two radiometers constituted of a 20 K front-end and
a warm back end at 300 K. In our design the reference load has a
temperature of 4 K.

In the back-end of each radiometer (see bottom part of
Fig. 2) the RF signals are further amplified, filtered by a low-
pass filter and then detected. After detection the sky and refer-
ence load signals are integrated, digitised and then differenced
after multiplication of the reference load signal by a so-called
gain modulation factor, r, which has the function to make the
sky-load difference as close as possible to zero.
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Fig. 2. Details of the front-end (upper figure) and back-end (lower fig-
ure) of LFI radiometers.

According to this architecture each radiometer will produce
two independent streams of sky-load differences; the final mea-
surement is provided by a further averaging of these differenced
data samples between the two radiometer legs.

The LFI pseudo-correlation design offers two main advan-
tages: the first is that the radiometer sensitivity does not depend
(to first order) on the level of the reference signal; the second is
provided by the fast switching that reduces the impact of 1/ f
fluctuations of back-end amplifiers. In the next subsection we
present the analytical description of this radiometer design. In
particular we derive formulas for the power output and sensi-
tivity in the two approximations of (i) perfectly balanced and
(ii) slightly unbalanced radiometer. Then we show how the ra-
diometer sensitivity is not dependent, to first order, on the ref-
erence load temperature and we also provide an estimate of this
dependence in the case of slightly unbalanced radiometer.
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In order to improve readability we have kept the mathemati-
cal treatment as simple as possible, relegating the full definition
of long formulas to Appendices.

2.2. Analytic model of LFI radiometers

2.2.1. Input-output signal sequence

Referring to the schematic in Fig. 2, we can define the follow-
ing transfer functions for the different radiometer components.

fhyb : {x, y} →
{

x + y√
2
,

x − y√
2

}

f FE
amp : {x, y} →

{
gF1 (x + nF1 )eiφF1 , gF2(y + nF2 )eiφF2

}
fsw : {x, y} →

{
x,

√
A jeiθ jy

}
with j = 1, 2 (1)

f BE
amp : {x, y} →

{
gB1 (x + nB1 )eiφB1 , gB2(y + nB2)e

iφB2

}
where:

– x(t) and y(t) represent the voltages at the sky and reference
horns respectively;

– gF1 , gF2 , gB1 and gB2 are the voltage gains of front-end and
back-end amplifiers;

– nF1 (t), nF2(t), nB1(t) and nB2 (t) represent the noise voltages
of the front-end and back-end amplifiers;

– φF1 , φF2 , φB1 and φB2 represent the signal phases after the
amplifiers;

– θ1 and θ2 represent the phase shifts in the two switch states
(in LFI baseline θ1 = 0 and θ2 = π);

– A1 and A2 represent the fraction of the signal amplitudes
that is transmitted after the phase switch in the two switch
states. For lossless switches A1,2 = 1.

The output signal at the two radiometer legs is given by:

s j,1 = eiφB1gB1

{
nB1 +

1√
2

[
eiφF1 gF1

(
nF1 +

x + y√
2

)

+
√

A jei(θ j+φF2 )gF2

(
nF2 +

x − y√
2

)]}
(2)

s j,2 = eiφB2gB2

{
nB2 +

1√
2

[
eiφF1 gF1

(
nF1 +

x + y√
2

)

− √
A jei(θ j+φF2 )gF2

(
nF2 +

x − y√
2

)]}

where the subscript j = 1, 2 indicates the two phase switch
states.

2.2.2. Radiometer power output and sensitivity

Our first step is to write an expression for the radiometer power
output at a given time t, considering that in our scheme we take
the difference between the sky and load signals. If we indicate
with p l(t) the power output at each of the two radiometer legs

(where l = 1, 2) and with p (t) the radiometer power output we
have that:

p 1(t) = a
(
|s1,1|2(t) − r|s2,1|2(t + ∆tsw)

)
p 2(t) = a

(
|s2,2|2(t + ∆tsw) − r|s1,2|2(t)

)
(3)

p (t) = 1/2
[
p1(t) + p2(t)

]
where a is the constant of proportionality of the square-law de-
tectors, ∆tsw ∼ 122 µs corresponds to half of the phase switch
period and r is the gain modulation factor which in LFI scheme
is applied in software. The expanded form of p 1(t) is reported
in Eq. (A.1); a similar relationship holds for p2(t). The assump-
tion of identical values of a in the above equation can be made
without loss of generality; any difference in actual values be-
tween the two legs could be absorbed into back-end gain dif-
ferences for the purposes of this analysis.

In our treatment we will show how the gain modulation
factor (a real number generally ≤1) can be tuned properly in
order to have an approximately null power output, which leads
to almost complete suppression of the dependency of the ra-
diometer sensitivity on the reference load signal, and minimal
impact of gain fluctuations in the front-end amplifiers. Note
that in Eq. (3) the sky and load signals appearing in the differ-
ence are sampled at slightly different times, which are relative
to the two different phase switch states; this is relevant when
we consider the effect of 1/ f fluctuations of the back-end am-
plifiers. The effect of these instabilities can be practically elim-
inated by using a phase switch frequency fsw much greater than
the 1/ f noise knee frequency; in Sect. 3.3 we will show that the
baseline phase switch frequency of ∼4 KHz considered for LFI
leads to a very low level of back-end 1/ f noise.

Let us now calculate the time average of p l(t) integrated
over the bandwidth, β, i.e. p l =

∫
β

∫
∆tsw

p l(t)dtdν. Considering
that signal and amplifier noises are uncorrelated we have
that cross-correlation terms vanish; therefore we can write p1
and p2 in the following compact form:

p1 = akβGB1

[
Tx(Ĝ − rÎ) − rTy

(
G̃ − 1

r
Ĩ

)
+ T̂n1 − rT̃n1

]
(4)

p2 = akβGB2

[
Tx(G̃ − rĨ) − rTy

(
Ĝ − 1

r
Î

)
+ T̃n2 − rT̂n2

]

where:

Ĝ =
1
4

[
GF1 + A1GF2 + 2

√
A1GF1GF2 cos(θ1 + φ)

]
Î =

1
4

[
GF1 + A2GF2 + 2

√
A2GF1GF2 cos(θ2 + φ)

]
G̃ =

1
4

[
GF1 + A2GF2 − 2

√
A2GF1GF2 cos(θ2 + φ)

]
Ĩ =

1
4

[
GF1 + A1GF2 − 2

√
A1GF1GF2 cos(θ1 + φ)

]
T̂nl =

1
2

(GF1 TnF1
+ A1GF2 TnF2

+ 2 TnBl
)

T̃nl =
1
2

(GF1 TnF1
+ A2GF2 TnF2

+ 2 TnBl
).



1188 M. Seiffert et al.: 1/ f noise and other systematic effects in the Planck-LFI radiometers

In Eq. (4) the terms Tx, Ty, TnF1
, TnF2

, TnB2
and TnB2

represent
the sky, load and amplifier noise temperatures which are de-
fined by relationships like kβTx = x2(k is the Boltzmann con-
stant), GF1,F2,B1,B2 = g

2
F1,F2,B1,B2

are the amplifier power gains, β
is the bandwidth and φ = φF2 − φF1 is the phase mismatch of
the front-end amplifiers.

In the case in which radiometer parameters (gains, noise
temperatures, etc.) depend on the frequency, Eq. (4) is still valid
provided that we use values averaged over the bandwidth, i.e.
for each parameter P on the left-hand side of the above defini-

tions: P→ P = 1
ν

∫ ν0+
β
2

ν0− β
2

P(ν)dν.

We now see that in order to null the output at each radiome-
ter branch output (i.e. make pl = 0), we must adjust r to a
proper value, denoted r∗. In the general case discussed above
we have that:

p1 = 0 =⇒ r = r∗1 =
TxĜ + Ty Ĩ + T̂n1

TyG̃ + TxÎ + T̃n1

p2 = 0 =⇒ r = r∗2 =
TxG̃ + Ty Î + T̃n2

TyĜ + TxĨ + T̂n2

· (5)

It should be noted that both the sky temperature and the instru-
mental parameters are expected to undergo changes of order of
few mK. Thermal variations and aging are likely to drive in-
strumental changes which are expected to occur on time scales
of days to months. The main source of change in Tx is the CMB
dipole signature, which introduces a spin-synchronous (1 rpm)
temperature modulation δTx ≤ 3.5 mK. In principle it could
be possible to implement feedback schemes in order to vary r
almost in real time and have a constant zero output4; however,
this would complicate the scheme and possibly introduce ad-
ditional sources of systematics. We anticipate that adjusting r
on the timescale of a few days will be sufficient, so that we can
consider r constant in the following calculations. This issue is
discussed in more detail in a forthcoming paper currently in
preparation.

The radiometer sensitivity ∆T (i.e. the minimum signal that
can be detected in a bandwidth β and integration time τ) can
be calculated following the approach outlined in Appendix B
where we also report the complete algebraic form.

2.2.3. Approximations

In this section we derive some approximations of the general
equations presented in Appendices A and B.

Perfectly balanced radiometer. The first, zero-order approx-
imation is relative to the ideal case of a perfectly balanced ra-
diometer. We assume that the radiometer components are ide-
ally matched, but that there still is a temperature offset between
the sky and reference load, and that there are still noise and
gain fluctuations present in the amplifiers. This approximation
can be derived by setting GF1 = GF2 ≡ GF, GB1 = GB2 ≡ GB,
TnF1

= TnF2
≡ TnF , TnB1

= TnB2
≡ TnB , θ1 = 0, θ2 = π, φ = 0,

4 In this case the astrophysical information would be recovered by
recording the gain change needed to maintain the radiometer balance.

A1 = A2 = 1. In this case the radiometer power output and
sensitivity can be written in the following simple form:

p→ p0 = akβGFGB

[
Tx + Tntot − r(Ty + Tntot )

]

r∗1, r
∗
2 → r∗0 =

Tx + Tntot

Ty + Tntot

∆T |r≡r∗ → ∆T0|r≡r∗0 =

√
2
βτ0

(Tx + Tntot )

×
√

1 − (TnB/GF)2

(Tx + Tntot )(Ty + Tntot )
(6)

where Tntot = TnF + TnB/GF and τ0 represents the integration
time needed to obtain a sky-load measurement. Note that the
above expressions are relative to power output and sensitiv-
ity of the complete radiometer, i.e. after averaging the two ra-
diometer legs; the main advantage of this averaging is that any
first-order dependency of the knee frequency on the mismatch
in signal amplitudes after the phase switch is cancelled.

From Eq. (6) we see that the radiometer sensitivity is not
fully independent of the reference load temperature, Ty, be-
cause the signals in the two radiometer branches are correlated
upstream of the back-end amplification. On the other hand for

LFI typical parameters, the term
(TnB /GF)2

(Tx+Tntot )(Ty+Tntot )
is of the order

10−4−10−5. Therefore the sensitivity ∆T0|r≡r∗0 in Eq. (6) can be
approximated by:

∆T0|r≡r∗0 ≈
√

2
βτ

(Tx + Tntot ) (7)

which is independent from Ty. In the following of this paper
we will always refer to the radiometer sensitivity calculated for
r = r∗0 even if not explicitly indicated.

Slightly unbalanced radiometer. We will now consider the
case of a slight imbalance in the radiometer front-end, assum-
ing GB1 = GB2 = 1 and TnB1

= TnB2
= 0. The impact of

1/ f noise from the back-end amplifiers will be analysed in
Sect. 3.3.

The first-order approximation of a slightly unbalanced
front-end can be described mathematically by setting:

GF1 = G GF2 = G(1 + εG)
TnF1
= Tn TnF2

= Tn(1 + εTn )
A1 = 1 − εA1 A2 = 1 − εA2

φ = εφ
θ1 = εθ1 θ2 = π(1 + εθ2 ).

(8)

In Eq. (8) we assume that εG < 0.3 (i.e. we assume a gain mis-
match ≤1 dB) and that all other ε parameters are <0.1. Then we
expand Eqs. (4) and (B.1) in series at the second order in εG and
at the first order in the other parameters, obtaining the follow-
ing approximate equations for the average power output, p, and



M. Seiffert et al.: 1/ f noise and other systematic effects in the Planck-LFI radiometers 1189

the sensitivity, ∆T (the parameters α1 through α4 are defined in
Appendix C):

p ≈ p0

[
1 + 1/2

(
εG − α1ε

2
G − (εA1 + εA2 )/2 + α2 εTn

)]
∆T ≈ ∆T0

(
1 + 1/4α3 εTn + 1/16α4 ε

2
G

)
(9)

≈ ∆T0
(
1 + 1/4α3 εTn

)
where we have neglected the term 1/16α4 ε

2
G (of the order of

'10−3ε2
G) with respect to 1/4α3 εTn (of the order of '0.4 εTn).

From Eq. (9) it is apparent that the main additional contri-
bution to the ideal sensitivity comes from the imbalance in the
front-end noise temperature. For LFI typical values the sen-
sitivity is degraded by a factor in the range (0.4−0.5) × εTn

which means, in other words, that with a noise temperature
match better than 5% it is possible to maintain the sensitiv-
ity degradation at levels below 1%. A second consideration
is that small non-idealities in the radiometer chains introduce
only a very weak dependence of the sensitivity on the ref-
erence load temperature; in fact from Eq. (9) it follows that∣∣∣∣ ∂∆T
∂Ty

∣∣∣∣ = εTn

√
1

2βτ
Tn(Tx+Tn)
2(Ty+Tn)2 ≈ 1.5 × 10−5εTn .

3. Susceptibility to various systematic effects

In this section we study the susceptibility to some potential sys-
tematic effects arising from fluctuations in the radiometers; in
fact fluctuations in any of the terms appearing in Eq. (4) will
lead to a change in the observed signal which can mimic a
“true” sky fluctuation. If we denote with ∆Teq the spurious sig-
nal fluctuation induced by a variation in a generic radiometer
parameter w we have that:

∂ p̄
∂Tx
∆Teq =

∂ p̄
∂w
∆w. (10)

In the following sections of this paper, we calculate the mag-
nitude of these effects under the assumption that the fluctua-
tions in the various parameters are uncorrelated. Before calcu-
lating these effects we briefly examine the expected magnitude
of gain and noise temperature fluctuations.

3.1. Intrinsic HEMT amplifier noise characteristics

Cryogenic HEMT amplifiers are well known to have 1/ f type
gain fluctuations, and from this we can infer that they also have
1/ f type fluctuations in noise temperature (Pospieszalski 1989;
Wollack 1995; Jarosik 1996). The level of these fluctuations
can vary considerably among amplifiers and depends on the
details of device fabrication, device size, circuit design, and
other factors. Because of this, we will adopt an empirical model
for the fluctuations. We can write the 1/ f spectrum of the gain
fluctuations as:
∆G( f )

G
=

C√
f

(11)

where C represents a constant normalization factor. Similarly,
we can write the noise temperature fluctuations as

∆Tn( f )
Tn

=
A√

f
(12)

where A is the normalization constant for noise temperature
fluctuations. Here ∆T ( f )/T has units of Hz−1/2 and A is dimen-
sionless. From elementary statistical considerations, we can in-
fer that A = C/2

√
Ns, where Ns is the number of stages in the

amplifier.
A normalization of A ' 1.8×10−5 (see above references) is

appropriate for the 30 and 44 GHz radiometers. For the 70 and
100 GHz radiometers it will be necessary to use HEMT devices
with a smaller gate width to achieve the lowest amplifier noise
figure. We expect that the gate widths will be roughly 1/2 that
of the devices used for the lower frequency radiometers and
this will lead to fluctuations that are roughly a factor of

√
2

higher. For the higher frequencies we will therefore adopt a
normalization of A = 2.5 × 10−5. Note that values for A given
here should be regarded as estimates rather than precise values,
because in general A will be different for any particular device
and will generally depend on the physical temperature of the
amplifier.

While the calculations in this paper assume the above sim-
ple functional form for ∆T ( f ), it is straightforward to repeat
the calculations with a more detailed spectral shape.

3.2. Front-end amplifier fluctuations

3.2.1. Sensitivity to noise temperature fluctuations

In this section, we will calculate the change in the output signal
for a small change in the noise temperature of the front-end
amplifiers. Using Eq. (10) we have that the change in input
signal induced by a fluctuation in TnF1

is given by:

∆Teq( f ) = ∆Tn( f )
∂p/∂TnF1

∂p/∂Tx
· (13)

Because both amplifiers (which have uncorrelated noise) can
contribute to the change in input signal, we have that the change
in input signal induced by noise temperature fluctuations in
both amplifiers is:

∆Teq( f ) = ∆Tn( f )


(
∂p/∂TnF1

∂p/∂Tx

)2

+

(
∂p/∂TnF2

∂p/∂Tx

)2
1
2

≈ ∆Tn( f )
r − 1√

2

(
1 +

3 + r
16

ε2
G

)
· (14)

If the reference load is at the same temperature as the sky, then
r = 1 and the effect vanishes.

Now we calculate the post-detection frequency, fk, at which
the contributions from noise temperature fluctuations are equal
to the white noise from an ideal radiometer:

∆Teq( fk)|r=r∗0 = ∆T ( f ). (15)

From Eq. (9) we can write the sensitivity spectral density as:

∆T ( f ) = ∆T0( f )
(
1 + 1/4α3 εTn

)
(16)

where ∆T0( f ) =
√

2
β (Tx + Tn). Now with simple algebra we

can rewrite Eq. (15) in terms of ∆Tn
Tn

which equals A/
√

f (see
Eq. (12)). A further expansion in ε yields:

fk(Tn) = f 0
k (Tn)

(
1 − 1/2α3 εTn + 1/8 (r + 3) ε2

G

)
(17)

where f 0
k (Tn) = β

[
A (1−r) Tn
2 (Tx+Tn)

]2
and α3 is defined in Appendix C.



1190 M. Seiffert et al.: 1/ f noise and other systematic effects in the Planck-LFI radiometers

0 5 10 15 20
0

5

10

15

20

0.1

0.075

0.05

0.03

0.001
0.001

0.0166

0.0166

Tn

Ty 30303030 GHzGHzGHzGHz

0 5 10 15 20 25 30
0

5

10

15

20

0.15

0.1

0.075

0.05

0.03

0.001
0.001

0.0166

0.0166

Tn

Ty 44444444 GHzGHzGHzGHz

0 10 20 30 40
0

5

10

15

20

0.5
0.35 0.25

0.15

0.1

0.03

0.001
0.001

0.0166

0.0166

Tn

Ty 70707070 GHzGHzGHzGHz

0 10 20 30 40 50
0

5

10

15

20

1.0

0.75

0.5

0.25

0.1

0.03

0.001
0.0010.0166

0.0166

Tn

Ty 100100100100 GHzGHzGHzGHz

Fig. 3. Curves of equal fk (in Hz) on the plane Ty (K, thermodynamic temperature), Tn assuming a thermodynamic sky temperature of 2.7 K.
Each panel refers to a different frequency channel. The dashed contour refers to values for which the knee frequency is equal to the spin
frequency ( fspin = 0.0166 Hz). The graphs also show the range of typical LFI noise temperature values (grey area) and the nominal reference
load temperature (4 K − double horizontal line).

Let us now consider first the ideal case, in which fk(Tn) =
f 0
k (Tn). Assuming a 20% bandwidth and a thermodynamic sky

temperature of 2.7 K, we can calculate knee frequencies for
several choices of Ty and Tn. Results are summarised graphi-
cally in Fig. 3, where we show contour plots of constant fk as
a function of Ty (given in thermodynamic temperature) and Tn.
The contour relative to fk = fspin = 0.0166 Hz is shown with
a dashed line. The graphs also show (for each frequency) the
range of typical noise temperature values (grey area) and the
nominal reference load temperature (4 K − double horizontal
line). These results show that at all frequencies the expected
knee frequency arising from noise temperature fluctuations is
f 0
k (Tn) ∼ 3−5 mHz, i.e. about 4 to 7 times less than the spin

frequency.

In the limits of our approximations (i.e. a noise temperature
match better than 10% and a gain match better than 1 dB) ra-
diometer non idealities determine a correction to the zero-order
knee frequency that is within ±10%.

3.2.2. Sensitivity to gain fluctuations

In this section we calculate the radiometer sensitivity to front-
end gain fluctuations and show that with proper gain modula-
tion the effect is negligible compared to the effect induced by
fluctuations in Tn.

Proceeding similarly to the previous section the post-
detection knee frequency of 1/ f noise caused by gain

fluctuations in the front-end amplifiers (in the case of a per-
fectly balanced radiometer) is:

f 0
k (G) =

1
2

C2β

[
Tx + Tn − r(Ty + Tn)

]2

(Tx + Tn)2 + r2 (Ty + Tn)2
(18)

which shows that with proper gain modulation (r = r∗0) the
radiometer is insensitive to gain fluctuations, i.e. f 0

k (G) = 0.
If we calculate fk(G) in the general case with the usual series
expansion we have:

fk(G)|r=r∗0
≈ β

C
(
Tx − Ty

) (
2Tn + Tx + Ty

)
8 (Tn + Tx )

(
Tn + Ty

)


2

ε2
G. (19)

From Eq. (19) we see that for typical LFI parameters and
εG ∼ ± 0.15 (which corresponds to a gain mismatch of the or-
der of ∼ ± 0.5 dB) the knee frequency fk(G)|r=r∗ < 1 mHz,
which indicates that with proper gain modulation the 1/ f noise
is still dominated by noise temperature fluctuations even if the
radiometer is slightly unbalanced.

In LFI baseline we foresee a software implementation of
the gain modulation factor r, so that the sky and reference
load signals will be detected, converted to digital and then sub-
tracted after multiplication of the reference load temperature
by r.

Although r will not suffer any fluctuations, it will be in gen-
eral different, at any time, from the ideal value r∗. This has an
impact on the radiometer 1/ f noise at two different levels: (i)
f 0
k (G) will be different from zero (because the effect of gain os-

cillations will not be cancelled completely) and (ii) f 0
k (Tn) will
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decrease or increase depending on the sign of εr (because r will
be closer or farther from 1).

In order to evaluate the effect of a slight deviation of r
from r∗ let us consider a reference value of r that nulls or
makes very close to zero the output at a certain instant t0 (i.e.
r(t0) = r∗(t0)); therefore at a generic time t the parameter r(t)
can be written as: r(t) = r∗(t0)(1 + εr(t)), where εr(t) � 1.

Considering that for r ' r∗ we have f 0
k (G) '

1
4 C2β

[Tx+Tn−r(Ty+Tn)]2

(Tx+Tn)2 (see Eq. (18)) we obtain the following
expressions for fk(Tn) and fk(G):

f 0
k (Tn) = β

[
A Tn

2 (Tn + Tx)

]2 [
1 − (1 + εr) (Tn + Tx)

Tn + Ty

]2

(20)

f 0
k (G) = βNs

{
A [Tn + Tx − (1 + εr) (Tn + Tx)]

Tn + Tx

}2

·

If we solve for εr the equation f 0
k (Tn) = f 0

k (G) we find two
solutions, εr1 and εr2 (with εr1 < εr2 ) given by:

εr1 = −
Tn

(
Ty − Tx

)
(Tn + Tx)

[
(C/A − 1) Tn + (C/A) Ty

]−1

(21)

εr2 =
Tn

(
Ty − Tx

)
Tn + Tx

[
(C/A + 1) Tn + (C/A) Ty

]−1

which define an interval
[
εr1 , εr2

]
such that fk(G) � fk(Tn) for

εr1 � εr � εr2 and fk(G) � fk(Tn) otherwise. From Eq. (21)
it is apparent that the width of the interval

[
εr1 , εr2

]
is smaller

for the high frequency channels, characterised by higher val-
ues of the noise temperature; therefore the requirement on the
gain modulation factor accuracy is determined by the 100 GHz
channel.

Figure 4 shows the behaviour of εr1 and εr2 versus the ra-
tio between gain and noise temperature fluctuations (i.e. C/A =
2
√

Ns) for the 100 GHz channel. The region between the two
curves corresponds to values of εr for which the noise tempera-
ture 1/ f fluctuations dominate over gain instabilities. From the
figure it is apparent that 1/ f noise arising from gain fluctua-
tions do not dominate if the gain modulation factor is accurate
at the level of ≤± 0.2%.

Let us estimate the uncertainty in r introduced by the largest
expected fluctuation in the signal, i.e. the CMB dipole. If the
fluctuation induced by the Dipole were larger than the require-
ment, then it would be necessary to calculate r almost in real-
time, in sub-minute time scales. From a simple calculation of
δr/r = δTdipole/ (Tx + Tn) it follows that δr/r ∼ 10−4, which in-
dicates that it will be possible to update r on longer time-scales
(of the order of few days) to account for variations caused by
slow instrumental drifts.

Let us now analyse the effect of a small leakage across the
first hybrid coupler, in the balanced radiometer approximation;
if ε is the fraction of a signal applied to one port that shows
up in the isolated port, then we can write the averaged power
output, p, as:

p = akβG
{
Tx + Tn(1 + ε)2 − r

[
Ty + Tn(1 − ε)2

]}
· (22)
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fk(G) < fk(Tn) εr1

εr2

Shaded area: εr¡< ± 0.2%
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Fig. 4. Behaviour of εr1 and εr2 (calculated from Eq. (21)) as a func-
tion of C/A for the 100 GHz channel. From the figure if follows that
fk(G) < fk(Tn) (i.e. noise temperature fluctuations dominate) if the
gain modulation factor is known with an error ≤ ± 0.2%.

The change in output caused by a small change in gain with the
presence of such non-ideal isolation is:

∂p
∂G
= akβ

{
Tx + Tn(1 + ε)2 − r

[
Ty + Tn(1 − ε)2

]}
· (23)

Now, with the correct choice of r, we can make the sensitivity
to gain fluctuations vanish and null the average output of the
radiometer simultaneously:

r =
Tx + Tn(1 + ε)2

Ty + Tn(1 − ε)2
· (24)

Note that this freedom of choice for r is not available to correla-
tion radiometer designs without gain modulation, and therefore
they are subject to 1/ f fluctuations on the non-isolated fraction
of the signal.

3.3. Sensitivity to back-end amplifier gain fluctuations

In this section we analyse the radiometer sensitivity to gain
fluctuations of the back end amplifiers. Considering that the
back-end noise is suppressed by a factor ∼103 by the front-end
amplification we can neglect the contribution of the noise tem-
perature fluctuations.

Let us consider the case of a perfectly balanced front-end
and suppose that the gain value in the two states of the phase
switch is different by ∆GB.

The power output from a single radiometer leg will be then
given by:

p = px − r py

px = a k βGF GB
(
Tx + TnF + TnB/GF

)
(25)

py = a k βGF (GB + ∆GB)
(
Tx + TnF + TnB/GF

)
.

A straightforward analysis shows that the fluctuation ∆GB will
cause an equivalent spurious signal

∆Teq = −r
∆GB

GB

(
Ty + TnF + TnB/GF

)
. (26)

Substituting ∆GB/GB = C/
√

f , r = r∗0 and setting ∆Tequiv

equal to the single radiometer leg spectral density (equal to
2 β−1/2 (

Tx + Tntot

)
, see Eq. (7)) we can calculate the post-

detection knee-frequency as:

f 0
k (GB) = βNs A2. (27)
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Using typical values for β, Ns and A in Eq. (27) it follows that
the post-detection knee frequency arising from back-end gain
fluctuations can be much greater than 1 Hz. Therefore to elimi-
nate the contribution of the back-end 1/ f noise we need a phase
switch frequency such that fsw � f 0

k (GB), so that the gain will
be constant during the post-detection integration time.

For the LFI radiometers we have chosen a phase switch fre-
quency of ∼4 KHz which leads to a small back-end 1/ f con-
tribution to the overall radiometer knee frequency for expected
values of back-end gain fluctuations.

3.4. Sensitivity to reference load fluctuations

Proceeding as in the previous section we have that the sig-
nal mimicked by reference load fluctuations, ∆Ty, is given by
∆Teq = −r∆Ty.

If we consider random fluctuations in the reference load
signal with a spectral density given by ∆Ty( f ) then we have
that these fluctuations equal the white noise for:

∆Ty( f ) = ∆T 0
y ( f )

1 + α3 εTn

4
−

(
r − 1

r

)
ε2

G

16

 (28)

where ∆T 0
y ( f ) =

√
2/β (Ty+Tn) and α3 is defined in Eq. (C.1).

This provides an upper limit to allowed random fluctuations
in Ty in order not to dominate the noise of the radiometer. For
typical LFI parameters, this upper limit is of the order of∆Ty ∼
1.8×10−4 K/

√
Hz at 30 GHz, slightly increasing for the higher

frequency channels (3.2×10−4 K/
√

Hz at 100 GHz). If we now
consider the reference load in a global systematic error budget
for LFI (the details of which are outside the scope of our paper)
this implies requirements that are about one order of magnitude
smaller than the above values.

If we consider non random fluctuations in the reference sig-
nal then the error induced by these variations must be much
less than the sensitivity per pixel in the final maps. This error,
that depends on the spectral behaviour of the spurious signal,
on the satellite scanning strategy and on the data analysis pro-
cedures to build the sky maps, can be estimated using the ap-
proach described in Mennella et al. (2002). If we follow this
approach considering that the parameter r is of order unity, we
have that spin synchronous variations of the reference signal
will be transferred directly to the final maps, while slower fluc-
tuations will be damped by a factor of the order of 10−2−10−3

by the measurement strategy and by data analysis.

4. Conclusions

In this paper we have discussed the pseudo-correlation ar-
chitecture adopted for the radiometers of the P-LFI in-
strument and we have studied the sensitivity of the measured
signal to various systematic effects. In our treatment we have
considered both the ideal case of a perfectly balanced radiome-
ter and the effect of small mismatches in the various radiometer
parameters.

The first result is that the radiometer sensitivity does not
depend on the level of the reference load temperature; even in
the case of a slight imbalance in the radiometer parameters the
dependence on Ty is at the level of ∂∆T/∂Ty ∼ 10−5 which

is negligible. The only mismatch which has a first-order im-
pact on ∆T is the noise temperature mismatch of the front-end
amplifiers; our analysis shows that it is possible to maintain
the sensitivity degradation below 1% with a noise temperature
match better than 5%.

With proper gain modulation (r = r∗0) the 1/ f noise in
the radiometer output is determined mainly by noise temper-
ature fluctuations in the front-end amplifiers, with a knee fre-
quency of few mHz, provided that the front-end amplifier am-
plitude match is better that ∼±0.5 dB. Such a high level of
1/ f noise suppression depends on the gain modulation fac-
tor, which must be determined with an accuracy better than
±0.2%. If the accuracy on r is less than ±1% then gain fluc-
tuations become the major source of 1/ f noise and εr is kept in
the range ±1% we expect values of the knee frequency of the
order of 50 mHz which can be easily handled by destriping al-
gorithms. The presence of a small amount of leakage in the first
hybrid does not significantly modify this conclusion; with the
correct choice of r, one can make the sensitivity to gain fluc-
tuations vanish and null the average output of the radiometer
simultaneously.

The effect of gain fluctuations in the back-end amplifiers
can be made negligible by the fast front-end switching between
sky and reference load signals. The LFI baseline of 4096 Hz for
the phase switch frequency has been chosen to guarantee a high
suppression level of the 1/ f noise from back-end amplifiers.

In general our analysis demonstrates the effectiveness of
the gain modulation concept applied to this form of radiome-
ter. The estimate of the knee frequency given by Eq. (17) is
quite low and relatively immune to small imperfections in ra-
diometer balance. The modified correlation radiometer scheme
reduces the knee frequency by more than two orders of mag-
nitude, compared to a total power radiometer of similar band-
width and intrinsic transistor fluctuations. For such small resid-
ual knee frequency (of ∼0.1 Hz) it will be possible to remove
efficiently the effects during data analysis.

We have also studied the sensitivity of the radiometer to
changes in the reference load temperature, Ty. Our analysis
provides a framework in which thermal stability requirements
on the LFI reference loads can be evaluated.

A refinement of the present analysis for the determination
of fk will be pursued in the future by software simulations of
the radiometer functions to accurately study the combined ef-
fect of all components. Finally, laboratory measurements of a
prototype radiometer working under conditions close to those
of Planck mission constitute the most important checks for the
ultimately understanding of the behaviour of P LFI ra-
diometers regarding the 1/ f type noise and possible further
effects. Results of preliminary laboratory measurements per-
formed of P-LFI prototype radiometers will be presented
in forthcoming publications.

Acknowledgements. It is a pleasure to thank S. Weinreb, T. Gaier,
D. Scott, G. Smoot, C. Lawrence, S. Levin, M. Janssen, and J.
Delabrouille for useful discussions.



M. Seiffert et al.: 1/ f noise and other systematic effects in the Planck-LFI radiometers 1193

Appendix A: Power output

The radiometer power output at each of the radiometer output legs is defined by:

p1(t) =
a
4
g2

B1

{[(
2 nB1 cos (φB1) + gF1 (

√
2 nF1 + x + y) cos (φF1 + φB1 )

+
√

A1 gF2 (
√

2 nF2 + x − y) cos (θ1 + φF2 + φB1 )
)2

+
(
2 nB1 sin (φB1 ) + gF1 (

√
2 nF1 + x + y) sin (φF1 + φB1)

+
√

A1 gF2 (
√

2 nF2 + x − y) sin (θ1 + φF2 + φB1 )
)2
]

−r
[(

2 nB1 cos (φB1) + gF1 (
√

2 nF1 + x + y) cos (φF1 + φB1)

+
√

A2 gF2 (
√

2 nF2 + x − y) cos (θ2 + φF2 + φB1 )
)2

+
(
2 nB1 sin (φB1 ) + gF1 (

√
2 nF1 + x + y) sin (φF1 + φB1)

+
√

A2 gF2(
√

2 nF2 + x − y) sin (θ2 + φF2 + φB1)
)2
]}

(A.1)

where a is the constant of proportionality of the square-law detectors. A similar relationship holds for p2(t).

Appendix B: Sensitivity

B.1. Outline for sensitivity calculation

In this Appendix we outline the procedure to calculate the LFI radiometer sensitivity (see Eq. (B.1)). We start from the expression
of the power output p(t), which is given by Eq. (A.1) and then we calculate the autocorrelation of p(t), denoted as ψp(τ) ≡
p(t)p(t + τ). Note that we assume that x, y, n1, and n2 are all uncorrelated Gaussian variables so that xy = x y and that they all have
zero mean. The next step is the calculation of the Fourier transform ofψp(τ) (indicated by Qp( f ), which can be split in a constant

part, Qp(0), and in a fluctuating part Q′p( f ). Then we calculate the rms voltage wrms = w(t)2
1/2

where w(t)2 =
∫ +∞
−∞ d f H( f )Q′p( f )

and H( f ) is a rectangular lowpass filter of height H0 and width b. The last step is to calculate the change in power output ∆p
determined by a change in the sky signal equal to ∆T ; the sensitivity ∆T is then calculated by solving the equationwrms = H1/2

0 ∆p.

B.2. Sensitivity analytical form

The radiometer sensitivity ∆T (calculated according to the procedure outlined above) has the following form:

∆T =
1
2

[
∆T 2

1 + ∆T 2
2

] 1
2 (B.1)

where ∆T1 and ∆T2 (which represent the minimum detectable rms signal on each single radiometer leg) are defined by the
following equations:

∆T1 =

√
1

2βτ

(
A − B r + C r2

) 1
2

Ĝ − rÎ

∆T2 =

√
1

2βτ

(
D − E r + F r2

) 1
2

G̃ − rĨ
· (B.2)

The coefficients A through F have the following form:

A = a1T 2
x + a2T 2

y + a3Tx + a4Ty + a5TxTy + a6 (B.3)

with similar relationships for B, C, D, E and F. Coefficients a j, b j, etc. are defined as follows.
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B.2.1. Definitions of aj coefficients

a1 = 2 Ĝ2

a2 = 2 Ĩ2

a3 = a31 TnF1
+ a32 TnF2

+ a33 TnB1

a31 =
1
2

GF1

[ √
GF1 +

√
A1 GF2 cos(θ1 − φF1 + φF2 )

]2

a32 =
1
2

A1 GF2

[ √
A1 GF2 +

√
GF1 cos(θ1 − φF1 + φF2 )

]2

a33 =
[ √

GF1 cos(φF1 ) +
√

A1 GF2 cos(θ1 + φF2 )
]2

a4 = a41 TnF1
+ a42 Tn2 + a43 TnB1

a41 =
1
2

GF1

[ √
GF1 −

√
A1 GF2 cos(θ1 − φF1 + φF2 )

]2

a42 =
1
2

A1 GF2

[ √
A1 GF2 −

√
GF1 cos(θ1 − φF1 + φF2 )

]2

a43 =
[ √

GF1 cos(φF1 ) − √
A1 GF2 cos(θ1 + φF2 )

]2

a5 =
1
4

(
GF1 − A1 GF2

)2

a6 =
1
2

GF1 TnF1

[
GF1 TnF1

+ 4 cos(φF1 )2 TnB1

]
+

1
2

A1 GF2 TnF2

[
2 cos(θ1 − φF1 + φF2 )2 GF1 TnF1

+ A1 GF2 Tn2 + 4 cos(θ1 + φF2 )2 TnB1

]
+ 2 T 2

nB1
.

B.2.2. Definitions of bj coefficients

b1 = 4 Î Ĝ

b2 = 4 Ĩ G̃

b3 = b31 TnF1
+ b32 TnF2

+ b33 TnB1

b31 = GF1

[ √
GF1 +

√
A1 GF2 cos(θ1 − φF1 + φF2 )

] [ √
GF1 +

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]
b32 =

√
A1 A2 GF2

[ √
A1 GF2 +

√
GF1 cos(θ1 − φF1 + φF2 )

] [ √
A2 GF2 +

√
GF1 cos(θ2 − φF1 + φF2 )

]
b33 = 2

[ √
GF1 cos(φF1) +

√
A1 GF2 cos(θ1 + φF2 )

] [ √
GF1 cos(φF1 ) +

√
A2 GF2 cos(θ2 + φF2 )

]
b4 = b41 TnF1

+ b42 TnF2
+ b43 TnB1

b41 = GF1

[ √
GF1 −

√
A1 GF2 cos(θ1 − φF1 + φF2 )

] [ √
GF1 −

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]
b42 =

√
A1 A2 GF2

[ √
A1 GF2 −

√
GF1 cos(θ1 − φF1 + φF2 )

] [ √
A2 GF2 −

√
GF1 cos(θ2 − φF1 + φF2 )

]
b43 = 2

[ √
GF1 cos(φF1) −

√
A1 GF2 cos(θ1 + φF2 )

] [ √
GF1 cos(φF1 ) − √

A2 GF2 cos(θ2 + φF2 )
]

b5 =
1
2

(
GF1 − A1 GF2

) (
GF1 − A2 GF2

)
b6 = GF1 TnF1

[
GF1 TnF1

+ 4 cos(φF1 )2 TnB1

]
+GF2

√
A1 A2TnF2

[ √
A1 A2 GF2 TnF2

+ 4 TnB1
cos(θ1 + φF2 ) cos(θ2 + φF2 )

+ 2 GF1 TnF1
cos(θ1 − φF1 + φF2 ) cos(θ2 − φF1 + φF2 )

]
+ 4 T 2

nB1
.

B.2.3. Definitions of cj coefficients

c1 = 2 Î2

c2 = 2 G̃2

c3 = c31 TnF1
+ c32 TnF2

+ c33 TnB1

c31 =
1
2

GF1

[ √
GF1 +

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]2
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c32 =
1
2

A2 GF2

[ √
A2 GF2 +

√
GF1 cos(θ2 − φF1 + φF2 )

]2

c33 =
[ √

GF1 cos(φF1 ) +
√

A2 GF2 cos(θ2 + φF2 )
]2

c4 = c41 TnF1
+ c42 TnF2

+ c43 TnB1

c41 =
1
2

GF1

[ √
GF1 −

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]2

c42 =
1
2

A2 GF2

[ √
A2 GF2 −

√
GF1 cos(θ2 − φF1 + φF2 )

]2

c43 =
[ √

GF1 cos(φF1 ) − √
A2 GF2 cos(θ2 + φF2 )

]2

c5 =
1
4

(
GF1 − A2 GF2

)2

c6 =
1
2

GF1 TnF1

[
GF1 TnF1

+ 4 cos(φF1)
2 TnB1

]
+

1
2

A2 GF2 TnF2

[
2 cos(θ2 − φF1 + φF2 )2 GF1 TnF1

+ A2 GF2 TnF2
+ 4 cos(θ2 + φF2 )2 TnB1

]
+ 2 T 2

nB1
.

B.2.4. Definitions of dj coefficients

d1 = 2 G̃2

d2 = 2 Î2

d3 = d3,1 TnF1
+ d3,2 TnF2

+ d3,3 TnB2

d3,1 =
1
2

GF1

[ √
GF1 −

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]2

d3,2 =
1
2

A2 GF2

[ √
A2 GF2 −

√
GF1 cos(θ2 − φF1 + φF2 )

]2

d3,3 =
[ √

GF1 cos(φF1 ) − √
A2 GF2 cos(θ2 + φF2 )

]2

d4 = d4,1 TnF1
+ d4,2 TnF2

+ d4,3 TnB2

d4,1 =
1
2

GF1

[ √
GF1 +

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]2

d4,2 =
1
2

A2 GF2

[ √
A2 GF2 +

√
GF1 cos(θ2 − φF1 + φF2 )

]2

d4,3 =
[ √

GF1 cos(φF1 ) +
√

A2 GF2 cos(θ2 + φF2 )
]2

d5 =
1
4

(
GF1 − A2 GF2

)2

d6 =
1
2

GF1 TnF1

[
GF1 TnF1

+ 4 cos(φF1 )2 TnB2

]
+

1
2

A2 GF2 TnF2

[
2 cos(θ2 − φF1 + φF2 )2 GF1 TnF1

+ A2 GF2 TnF2
+ 4 cos(θ2 + φF2 )2 TnB2

]
+ 2 T 2

nB2
.

B.2.5. Definitions of ej coefficients

e1 = 4 Ĩ G̃

e2 = 4 Î Ĝ

e3 = d3,1 TnF1
+ d3,2 TnF2

+ d3,3 TnB2

e3,1 = GF1

[ √
GF1 −

√
A1 GF2 cos(θ1 − φF1 + φF2 )

] [ √
GF1 −

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]
e3,2 =

√
A1 A2 GF2

[ √
A1 GF2 −

√
GF1 cos(θ1 − φF1 + φF2 )

] [ √
A2 GF2 −

√
GF1 cos(θ2 − φF1 + φF2 )

]
e3,3 = 2

[ √
GF1 cos(φF1) −

√
A1 GF2 cos(θ1 + φF2 )

] [ √
GF1 cos(φF1) −

√
A2 GF2 cos(θ2 + φF2 )

]
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e4 = e4,1 TnF1
+ e4,2 TnF2

+ e4,3 TnB2

e4,1 = GF1

[ √
GF1 +

√
A1 GF2 cos(θ1 − φF1 + φF2 )

] [ √
GF1 +

√
A2 GF2 cos(θ2 − φF1 + φF2 )

]
e4,2 =

√
A1 A2 GF2

[ √
A1 GF2 +

√
GF1 cos(θ1 − φF1 + φF2 )

] [ √
A2 GF2 +

√
GF1 cos(θ2 − φF1 + φF2 )

]
e4,3 = 2

[ √
GF1 cos(φF1 ) +

√
A1 GF2 cos(θ1 + φF2 )

] [ √
GF1 cos(φF1) +

√
A2 GF2 cos(θ2 + φF2 )

]
e5 =

1
2

(
GF1 − A1 GF2

) (
GF1 − A2 GF2

)
e6 = GF1 TnF1

[
GF1 TnF1

+ 4 cos(φF1 )2 TnB2

]
+GF2

√
A1 A2TnF2

[ √
A1 A2 GF2 TnF2

+ 4 TnB2
cos(θ1 + φF2 ) cos(θ2 + φF2 )

+ 2 GF1 TnF1
cos(θ1 − φF1 + φF2 ) cos(θ2 − φF1 + φF2 )

]
+ 4 Tn2

B2
.

B.2.6. Definitions of fj coefficients

f1 = 2 Ĩ2

f2 = 2 Ĝ2

f3 = f3,1 TnF1
+ f3,2 TnF2

+ f3,3 TnB2

f3,1 =
1
2

GF1

[ √
GF1 −

√
A1 GF2 cos(θ1 − φF1 + φF2 )

]2

f3,2 =
1
2

A1 GF2

[ √
A1 GF2 −

√
GF1 cos(θ1 − φF1 + φF2 )

]2

f3,3 =
[ √

GF1 cos(φF1 ) − √
A1 GF2 cos(θ1 + φF2 )

]2

f4 = f4,1 TnF1
+ f4,2 TnF2

+ f4,3 TnB2

f4,1 =
1
2

GF1

[ √
GF1 +

√
A1 GF2 cos(θ1 − φF1 + φF2 )

]2

f4,2 =
1
2

A1 GF2

[ √
A1 GF2 +

√
GF1 cos(θ1 − φF1 + φF2 )

]2

f4,3 =
[ √

GF1 cos(φF1 ) +
√

A1 GF2 cos(θ1 + φF2 )
]2

f5 =
1
4

(
GF1 − A1 GF2

)2

f6 =
1
2

GF1 TnF1

[
GF1 TnF1

+ 4 cos(φF1 )2 TnB2

]
+

1
2

A1 GF2 TnF2

[
2 cos(θ1 − φF1 + φF2 )2 GF1 TnF1

+ A1 GF2 TnF2
+ 4 cos(θ1 + φF2 )2 TnB2

]
+ 2 T 2

nB2
.
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Appendix C: Definition of α parameters

The parameters α1 through α4 used in Eqs. (9), (16), (17)
and (28) are defined as:

α1 =
(1 + r)(Tx − Ty)

8 [Tx + Tn − r (Tn + Tn)]

α2 =
(1 − r) Tn

Tx + Tn − r (Tn + Tn)

α3 = Tn

(
1

Tx + Tn
+

1
Ty + Tn

)

α4 =
Tx − Ty
Ty + Tn

· (C.1)
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