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ABSTRACT

We propose a set of statistics for detecting non-Gaussianity in one-dimensional cosmic microwave back-
ground radiation (CMBR) anisotropy data sets. These statistics are both simple and, according to calculations
over a space of linear combinations of three-point functions, nearly optimal at detecting certain types of non-
Gaussian features. We use this statistic to analyze the anisotropy detected by the UCSB SP91 experiment.
According to this statistic the mean of the four frequency channels is significantly non-Gaussian. If this signal
represents primordial CMBR fluctuations, it would be highly unlikely in a Gaussian theory with a small
coherence angle, such as “standard” (n = 1, Q, = 0.05, h = 0.5, A = 0) inflation. We cannot tell whether the
observed non-Gaussian signal is cosmological in origin, but if we assume it due instead to foreground emis-
sion, and remove the points responsible for the non-Gaussian behavior, the rms of the remaining fluctuations
is improbably low for the “standard” inflation theory. Further data are clearly needed before any definitive
conclusions may be drawn. We also generalize the ideas behind this statistic to non-Gaussian features that

might be detected in other experimental schemes.

Subject headings: cosmic microwave background — cosmology: theory — methods: statistical

1. INTRODUCTION

Many experiments, current and proposed, are dedicated to
measuring fluctuations in the cosmic microwave background
radiation (CMBR). These measurements promise a strong
experimental test of theories of structure formation in the early
universe, as each theory predicts a distinct magnitude and form
for CMBR fluctuations. In inflationary models, the structure
generation mechanism is linear, resulting in a Gaussian pattern
of fluctuations completely characterized by its power spectrum
(see, e.g., Efstathiou 1990). By contrast, in theories based on
symmetry breaking and field ordering (e.g., cosmic strings and
textures) nonlinear dynamics lead to a non-Gaussian anisot-
ropy pattern, due in part to horizon-sized topological defects
at the epoch of last scattering (Kaiser & Stebbins 1984; Turok
& Spergel 1990; Bennett & Rhie 1993; Pen, Spergel, & Turok
1993; Coulson et al. 1994).

CMBR measurements have not yet definitively discrimi-
nated among different structure formation theories. This is in
part because the measurements are still far from perfect. COBE

+ has a low signal-to-noise ratio and large angular smoothing

scale (Smoot et al. 1992; Ganga et al. 1993), while other experi-
ments are less noisy but cover only a small region of the sky
(e.g., Gaier et al. 1992; Schuster et al. 1993; Cheng et al. 1993;
Dragovan et al. 1993; Meinhold et al. 1993; Gundersen et al.
1993). While degree-scale fluctuations are now seen (Schuster
et al. 1993; Cheng et al. 1993; Dragovan et al. 1993; Gundersen
et al. 1993), the nature and origin of these structures needs
further determination.
Even when fairly good CMBR anisotropy power spectrum
measurements are available, it is difficult to rule out theories,
" because most theories include parameters (n, h, Q, Qg A,
tensor/scalar ...) which can be adjusted to modify the power
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spectrum. Such adjustments do not, however, alter the more
fundamental Gaussian or non-Gaussian character of the theo-
ries, which may be a more powerful discriminator. This paper
is aimed at finding statistics which focus on this basic question.
Other recent papers which propose statistical tests for non-
Gaussianity are Falk, Rangarajan, & Srednicki (1992), Luo &
Schramm (1993), Moessner, Perivaropoulos, & Brandenberger
(1993), and Srednicki (1993).

We are attempting to extract information from small data
sets obtained in very difficult experiments. This is of course
quite hazardous: it is unlikely that the idealized assumptions
we shall make about the experimental errors are correct. Any
non-Gaussianity we detect in the data may well be due to
foreground sources or systematic instrumental effects, rather
than non-Gaussian cosmology. Nevertheless it is an interesting
exercise to see how much may be learned, in principle, from
experiments of the type currently being undertaken. This effort
may also serve as a guide to what kind of experiment would be
most informative in the future. At the very least, we can make
rigorous a process which is often performed by eye: the identi-
fication of data points which are inconsistent with Gaussian
theories and must be thrown out as contaminated if these theo-
ries are to be believed.

The various non-Gaussian field ordering theories predict
different characteristic forms on the microwave sky—for
example, linelike discontinuities for strings, hot and cold spots
for textures. However, they share a common feature: they
predict regions of sharp gradient (compared to gradients found
in a Gaussian theory of the same power spectrum), separated
by a characteristic scale of order the horizon at last scattering,
from one to a few degrees depending on the reionization
history of the universe (Pen et al. 1993 ; Coulson et al. 1993). In
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Fic. 1.—The characteristic “signatures” which would result from a step
function or region of very sharp gradient in the CMBR, for single- through
triple-difference experiments (that is, experiments whose results approximate
the first through the third derivatives of the CMBR intensity.) The purpose of
this paper is to develop methods of detecting these signatures against a back-
ground of instrument and other noise.

this paper we shall discuss statistics which are sensitive to
degree-scale large-gradient regions, and use them to discrimi-
nate between Gaussian and non-Gaussian theories.

We shall follow tradition and use as our canonical Gaussian
theory the “standard” inflationary model, with parameters
n=1h=05 Q=1,Q;=005 A =0, and negligible tensor
mode contribution. This theory has a coherence angle of order
15, substantially smaller than the scales degree scale experi-
ments probe. The results we get are similar to those obtained
assuming uncorrelated Gaussian noise at each point differ-
enced on the sky. So while we shall find rather strong evidence
against such theories from the UCSB SP91 data, the con-
straints are weaker for Gaussian theories with a large coher-
ence angle, as we will demonstrate using tensor-mode inflation.

As a concrete example of a degree-scale CMBR measure-
ment, we shall analyze the UCSB SP91 experiment (Gaier et al.
1992; Schuster et al. 1993). This is a “single difference ” experi-
ment; to generate a single data point, the beam moves in a
sinusoidal pattern, with the antenna temperature integrated
antisymmetrically. The result approximates the first spatial
derivative of the fluctuations. A set of results consists of nine to
15 data points (temperature differences), on an arc of constant
declination on the sky with 2°1 separation between points. To
correct for atmospheric and other drifts, a best-fit line is
removed. The Schuster et al. (1993) data set currently reports a
lower error per pixel than any other CMBR anisotropy mea-
surement (error in AT/T ~ 5 x 107¢ for the four-channel
average) and shows a significant detection at a level AT/
T ~1x 1073 The Gaier et al. (1982) data four-channel
average also shows a similar level of fluctuations. Other
ground-based experiments share many of these features,
although some integrate their intensities in such a way as to
approximate the second or third derivative of the fluctuations
rather than the first and are thus called double- or triple-
difference experiments. Depending on how many spatial deriv-
atives an experiment takes, a gradient region will leave certain
“signature ” forms on the data, as shown in Figure 1. Note that
although the signatures for high-derivative experiments
involve several points, they will appear even if the gradient
region is infinitely sharp and narrow (because for these experi-
ments, the instrument’s response function is broader than the
spacing between data points.)

2. CHOOSING STATISTICS

All current theories of the origin of structure produce fluc-
tuations in the form of a stationary random process. Any
such process may be completely characterized by the set of
all n-point correlation functions C,,,,,...,,.,- On a one-
dimensional data set {x;:1 < i < N} these may be estimated as

1 N-=ra-1

z (xi)(xH-n) T (xi+r,,_1) H

i=1

Corsrzrny = N=r_1
where, by convention,
O<ri<r,<- <r,.;<N-1.

We shall assume that the data set of interest has zero mean,
as in UCSB SP91, where a best-fit line is subtracted as
explained above. We shall adopt the convention of normal-
izing the data set to unit variance [(1/N) Y.~ , x? = 1] in order
to concentrate on the shape and not the amplitude of the
signal. '

The one-point function C, is identically zero, and the two-
point function C,, is identically one (because of our unit-
variance convention), an so the first nontrivial correlation is
C,;, the two-point correlation function at scale i. This does
contain nontrivial information about the fluctuations—it is the
Fourier transform of the power spectrum—but it is no help in
distinguishing Gaussian from non-Gaussian data.

The three-point function Cy;; is a more promising test for
non-Gaussianity. For Gaussian noise, {Co;;» = 0 for all i and j
(although for finite data sets there will be random fluctuations
about the expected value of zero.) For non-Gaussian skies we
expect nonzero three-point functions. For example, consider
the three-point function C,o9, more commonly known as
skewness. A data set containing a positive “ bump ” has several
outlying high points, and thus positive skewness. A downward-
pointing bump will lead to negative skewness. Either way, the
high absolute value of C,q, could be used to distinguish a data
set drawn from a Gaussian model from a region containing a
non-Gaussian bump (which, from Fig. 1, is a likely signature of
non-Gaussianity in a single-difference experiment.)

As we shall show, however, skewness is not a very powerful
statistic for reliably detecting non-Gaussianity in a noisy
experiment. We can improve on its performance in two ways.

First, if the CMBR is non-Gaussian, a “ bump ” marking a
gradient region may span two or more adjacent points. Even if
the region of steep gradient on the sky were infinitely sharp, it
would register in at least two data points because of the in-
strument’s response function. Skewness fails to take advantage
of these correlations among closely neighboring points
(obviously, since skewness is invariant under spatial scram-
bling of the data points.) We can remedy this shortcoming by
combining several adjacent points; for example, to look for
bumps of width ~ g, define

S = 1 N_ZH (xi + Xiyg + 00 + xi+q—1>3 (1)
TTN-q+1) 5 q .

This statistic responds much more sharply to several adjacent
high points than to the same number of high points scattered
randomly over the data set, so it better distinguishes actual
non-Gaussian bumps from noise. The absolute value of S, will
be near zero if no bump exists and strongly nonzero if there is a
single bump.
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Of course, S, is not equal to a simple three-point function,
but except for the treatment of points near the edges of a data
set, it is equivalent to a linear combination of three-point func-
tions. We will expand on this point later, when we show that S,
is nearly optimal, among all linear combinations of a certain
set of three-point functions, at detecting bumps of width near
three.

A second way to improve the performance of almost any
statistic which detects bumps in a data set is to apply it not to
the entire data set but to shorter subsets or “windows” of
length L < N. The final statistic S ; is defined as the absolute
value of the most extreme (positive or negative) S, found in any
of the N—L + 1 possible window positions. Use of these
“sliding windows” improves the statistic’s performance for
several reasons. Most importantly, it prevents a positive gra-
dient region in one part of the data from cancelling a negative
gradient in another region (by isotropy, both signs are equally
likely to occur.) The procedure also reduces the effects of noise
on the statistic’s probability distribution by concentrating on
only a few points around each gradient signature.

If the data set contains a bump with some number p of
adjacent “strong” (highly positive or highly negative) points,
we expect the best results from S,,; when L~ p + 2(q — 1):
This allows the window to contain every group of g adjacent
points which includes at least one “strong” point, and no
groups of g points with no “strong” point. S, is most sensitive
to bumps with about g “strong” points. We generally choose g
to be slighly larger than the expected value of p, say g = p + 1,
so

L=3g-1). @

We will show that both in Monte Carlo runs and on actual
experimental data, statistics perform much better on sliding
windows of about this scale than on entire data sets. For long
data sets, one might better consider the probability distribu-
tion of S, over window positions, rather than its maximal
value, but we do not develop this possibility in this paper.

Our favored choice of statistic will be S.¢, as ¢ = 3 will be
sensitive to bumps only slightly wider than the experimental
response function, and can thus detect gradient regions whose
width (relative to the two-degree scale set by the experiment) is
fairly small but nonnegligible. Equation (2) then sets the
window length of L = 6.

3. MONTE CARLO RESULTS

To test the relative power of different statistics, we devised a
Monte Carlo technique based loosely on the UCSB SP91
experiment. A large number of N-point trial data sets {x;:
1 <i < N} were generated. Typically, N = 13 to match the
UCSB SP91 experiment. Half these data sets were generated
from a “null” Gaussian model and half from a “ bumpy ” non-
Gaussian model.

We did not want to design statistics around specific cosmo-
logical theories, so we used rather vague, generic models at this
stage (but in § 5, we will analyze the performance of our chosen
statistic on realistic models). For the Gaussian “null” sets we
used pure white noise (N independent, random points drawn
from a Gaussian distribution.) For the non-Gaussian
“bumpy” model, a single bump, centered at some random
location n, within the data set, was laid down:

—a(n—no)?
X, =e a(n—no) s

where a determines the width of the bump; we generally chose
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o = 0.5, which gives the bumps a full-width half-maximum
(FWHM) of (81n2)!/? ~ 2.4 pixels. Incidentally, n, is not nec-
essarily an integer; the center of the bump can lie between
pixels. Independent Gaussian noise was then added to each
point to simulate instrument noise. In both the null and
“bumpy ” models, each data set {x;} was normalized to zero
mean and unit variance.

For each statistic S which we want to investigate, we can
calculate probability distributions of S in the “null” and
“bumpy” models. If S is a powerful detector of non-
Gaussianity, there should be little or no overlap between the
two distributions. Figure 2 shows these distributions. Figure 2
shows these distributions for our favorite statistic, S,.¢, using a
signal-to-noise ratio of 1.25 (about the same level as seen in the
UCSB SP91 data set). There is indeed very little overlap: the
value of S, calculated on a “bumpy” data set typically
exceeds the values of all but a small fraction of the null sets.
This “small fraction ” varies from one “ bumpy ” set to another,
but its average value is 1.2% (from now on, we’ll refer to this as
“a mean significance of 1.2%).

For comparison, Figure 3 shows the distributions of abso-
lute values of skewness (calculated in sliding windows of width
6) of data sets from the null and “ bumpy ” models. The overlap
is tremendous; at this noise level, skewness could never reliably
distinguish the two models. The idea of using sliding windows
also pays off; if we abandon them and calculate S; on the
entire data set at once, the mean significance rises from 1.2% to
3.4%. Evidently, S, is a much more powerful detector of non-
Gaussian bumps than is skewness, and S, (that is, S; with
sliding windows) is significantly better than S5 alone.

To test our assertion that each statistic S, is most sensitive to
bumps of width of about g, we performed Monte Carlo runs
like those described above for a variety of “bumpy” models
with bumps of different widths. For each model, we measured
the average significance obtained using S,.;(,-, for various
(integer) values of gq. As expected, each statistic S, 3,-,
reached its maximum power (lowest mean significance) for
bumps of FWHM near g.

4. OPTIMAL STATISTICS

We have justified the statistic S, ;,_;, by an incremental
process, starting with skewness, the simplest detector of non-
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FIG. 2—Probability distributions of the statistic S, (that is, S, as defined
in eq. [1], calculated in “sliding windows ” of length six) for the “bumpy ” and
null models described in the section on Monte Carlo results. The two distribu-
tions show very little overlap, so S, appears to be powerful at detecting
certain types of non-Gaussianity.
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FiG. 3—Probability distributions of skewness, calculated in “sliding
windows” of length six, for the same two models used in Fig. 2. There is
considerable overlap; skewness is much less powerful than S, at dis-
tinguishing between data sets drawn from these two models.

Gaussianity, and modifying it to counter its obvious short-
comings. Our Monte Carlo results showed that the resulting
statistic is a much better detector of non-Gaussian “bumps”
than is skewness, but we would like to go further and show that
it is optimal or near-optimal for this job, at least over certain
classes of related statistics.

The procedure of calculating S5, -, can be separated into
three steps. First we convolve the data set with a square tooth
of width ¢ (a function equal to one at g adjacent points, and
zero elsewhere). Next we take the third power of the convolved
data points. Finally we add the results for each connected
subset or “window ” of length 3(q — 1) within the data set, and
take the most extreme value of S, as our final statistic ;.3 1)-
For each of these three steps, we can investigate whether a
modification of the procedure would produce stronger results.

4.1. Optimal Choice of Convolution Function

Our choice to convolve the data with a square tooth func-
tion amounts to a filtered deconvolution about the gradient
signature we are searching for (in this case a bump), with the
high-frequency components suppressed. It is not better to use
the rigorous deconvolution function of the signature we are
seeking; this method is notoriously vulnerable to high-
frequency noise. But it is worthwhile to see whether convolving
the data with some other function, rather than the arbitrarily
chosen square tooth, would produce a better statistic.

As mentioned before, S, is nearly equivalent to a linear com-
bination of several three-point functions. Except for its treat-
ment of points near the window edges, S, is proportional to

Cooo + 2Coo1 + Co11) +2Cp12 + (Cooz + Coz22) - (3)

To the extent that this approximation holds, the search for
the optimal convolution function is equivalent to a search for
the optimal linear combination of three-point functions. We
define the generalized three-point function S5 by

863 = Cooo + UCoo1 + Co11) + (Co12) + (Cooz + Co32) -
)

Coo: and C,,, share the same coefficient for reasons of sym-
metry, as do Cq, and C,,,. There is no coefficient before Cq,

NON-GAUSSIANITY IN CMBR MEASUREMENTS 407

because an overall multiplicative constant does not affect a
statistic’s ability to distinguish between distributions of differ-
ent shapes.

Sg3 includes terms in all six of the three-point functions
which involve no more than three adjacent points at a time.
Wider ranging three-point functions, such as C,,;, are not
included because we are attempting to generalize S,, which
searches most powerfully for bumps spanning two or three
points.

To estimate the optimal coefficients ¢, 4, and v, the procedure
is as follows. We first adopt two simple analytic models of null
(Gaussian) and “bumpy” (non-Gaussian) distributions. We
then calculate the mean of S;; for the bumpy model, and its
mean and variance for the null model. We define the “ bump-
resolving power ” R as the distance, measured in standard devi-
ations of the null model, between the means of the null and
bumpy models:

<SG3>bump — <SG3>null .
\/(Sé3>null - <SC3>I’21““

Finally we maximize R as a function of ¢, u, and v. (The
definition of R is chosen to be both easily calculable and indic-
ative of the statistic’s ability to distinguish the two models.)

To simplify the calculation, we work in an infinitely long
window of length N — oo, instead of the window of length
L = 6 which we shall use in practice. This underscores the fact
that choosing a statistic (like S,) and choosing a window size
are two separate ideas; the idea of sliding windows is not spe-
cific to S, but improves the performance of almost any statistic.

R=

Q)

4.1.1. Null Model

The null model consists of N points drawn from a Gaussian
distribution of zero mean and unit variance, with one impor-
tant modification: each data set {x;} is set explicitly to zero
mean (where normally the means would fluctuate slightly
about zero). In other words, if {y;} are a set of independent
points drawn from a Gaussian distribution,

1 N
xi=Yi"N.j§,l,Vj'

This sounds like a trivial change, especially for large data sets
whose means would ordinarily fluctuate very little, but the
explicit normalization makes a surprising difference in the cal-
culation even as N — oco. We do not explicitly normalize each
set to unit variance, because it can be shown to make no
difference in the N — oo limit.

In order to calculate R from equation (5), we need to know
{S¢3> and (8%, for this model. (S¢;) is clearly zero, and
using other symmetry properties,

(8%3> = (Cloo> + 2t*¢Cfo1> + u*(C3;5> + 20%(C3o5> -
So we need to calculate expectations such as
1 N N
(Chood =73 X ¥ <)
i=1 j=1

for a Gaussian distribution with unit variance.

Expectations such as (x}x}) can be calculated using Wick’s
theorem, starting with the fundamental two-point expectation
{x;x;» = 6;; — N~'. The N~ ! term is due to the normalization
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of the {x;} to zero mean. The results are
{Cloo) =6N""', (C3p;)=2N"1,
<C302> =2N71, <C¢2)12> =N"'.
All other terms in the expression for (S2,) are zero, so
SEDu—=6+42+u> + 4N asN->oo. (6)
4.1.2. Bumpy Model
To represent non-Gaussian, “ bumpy ” data sets we take
X, = ay, + bm, ,

where the “noise” y, is drawn from a zero mean, unit variance
normal distribution, and m,, is the underlying “ bumpy ” model:

1 =z 2\ M4
= —a(n—no)2 __ h - = = NV = .
m, = g(e ¢), where ¢ N \/; , g ( — )

The bump center n, is chosen randomly and is not necessar-
ily an integer. The constants g and ¢ are chosen so that, as
N — oo, m, will also have zero mean and unit variance (when
averaged over all n,). The purpose of a and b is to set the
signal-to-noise ratio: S/N=b/a, and a®>+b*=1. It is
straightforward to check that all terms in the noise b have zero
expectation in S;; (this would not be true for moments higher
than the third.) Averaging over n, converts all sums to inte-
grals, which in the limit N — oo yields the results:

a2 8 o —2/3)
{Coo0» = b°N ;1'; » Coo1) = {Cooo)e 5
{Co02) = {Coo0ve ®>*, (Coo1) = {Copoove **.

For a = 0.5 (corresponding to a bump with FWHM of
about 2.4 data points, about the scale we hope to detect with
N G3)¢

(Sg3Ybump = DN Y2(0.6133 + 0.8789¢ + 0.2256u + 0.3233v) .
(7

Now we use equation (5) to estimate the statistic’s power to
distinguish Gaussian from non-Gaussian models:

<SG3 >bump —

vV <Sé3>null

The optimal values of ¢, u, and v are those which maximize
R; a numerical search for these yields the optimized three-
point statistic:

B3N 0.6133 + 0.8789¢ + 0.2256u + 0.3233v

R
V6 + 48 + u? +4p?

i

’

863 = Cooo + 2.15(Coo1 + Co11) +2.21Co,,
+ 0.79(Coo2 + Coz2) - (8)

As we hoped, this result is similar to equation (3), confirming
that our original combination of three-point functions (or
equivalently, our choice to convolve the data set with a square
tooth) is among the most powerful methods. Since this calcu-
lation was approximate, we checked it with more precise

* Monte Carlo runs, which confirmed that no other choice of
' convolution function gives dramatically better results. We
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have settled on the choice of a square tooth as the best com-
bination of simplicity and power.

4.2. Optimal Choice of Power

After convolving the data set with a square tooth of width g,
S, requires us to sum the third powers of the convolved data
points. We should investigate whether taking some power
other than the third would give better results. The higher the
power, the more emphasis is given to the most extreme points
in the data set (after convolution). Emphasizing extreme points
has the advantage of reducing the effects of noise, since it pre-
vents several small bumps, caused by noise, from matching the
effect of a large bump in the signal. The drawback is that for a
real signal, the highest points will have neighbors which are
also higher than average, since neither a physical gradient
region on the sky nor the instrument’s response function have
perfectly sharp edges. High points due to extreme values of
instrument noise will not in general have unusual neighbors.
So focusing too heavily on extreme points throws away infor-
mation which would help distinguish a physical signal from
noise. The optimal choice of power is that which balances these
two competing effects.

The answer is not obvious and is clearly model-dependent,
so we turn again to Monte Carlo results. Consider a class of
statistics

59, =

1 N-2 . X X )2
<x1+x1+1 +xl+2> . (9)

(N-2) ,-;1 3

These statistics are calculated in sliding windows of width 6;
they differ from S;,4 only in the use of the pth power rather
than the third. We investigated their ability to distinguish two
different “bumpy” models from white noise. One model,
described in the earlier section on Monte Carlo results, used
bumps of Gaussian profile with FWHM of 2.4 data points. The
other model used bumps of a square tooth profile with three
adjacent, equally high points randomly placed in the data set.
Gaussian white noise was added to both models at a signal-to-
noise ratio of 1.25. For the Gaussian-profile model, we expect
the resolving strength to peak at some finite power p, while the
square bumps should be best resolved at very high p since the
argument in favor of lower powers applies only to bumps in
which points near the bump have nonzero expectations.

The results are shown in Figure 4, which plots mean signifi-
cance of detection versus p. For detection of the Gaussian-
profile bumps, the optimal power was p = 3. For the square
bumps, higher powers are always better, as expected. Again,
neither gradient regions on the CMBR nor instrument
response functions are expected to have sharp cutoffs, so we
view the Gaussian profiles as more physically realistic than the
square ones, and continue to use p = 3. However, the results
show that p =3 is only slightly better than other nearby
choices, so we will not hesitate to use p = 4 later in the paper
when we generalize the statistic to search for other types of
gradient signatures (because even powers will be more conve-
nient than odd ones).

Also, we should note that S becomes very simple as
p — oo. Our statistic is then equivalent (in its relative ranking
of different data sets, which is the only thing that matters) to
simply convolving the data with a square tooth of width three,
and then choosing the most extreme point. The “sliding
window” becomes irrelevant in this limit. Readers who feel
that this extra simplicity is worth sacrificing some power may
prefer to use this straightforward procedure.
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FI1G. 4—The average significance levels achieved by the statistics ST
defined in eq. (9) as a function of the power p, when used to discriminate
Gaussian noise from two different non-gaussian models. One model employs
bumps of a Gaussian profile, the other bumps of a square tooth profile. We
consider the former more physically reasonable, and consequently adopt the
power p = 3 in our subsequent analysis.

4.3. Optimizing Window Size

The final choice that we have made is to use windows of
length L = 3(qg — 1) (eq. [2]). There is not much of interest to
say about this choice. We gave a rough justification in § 2, and
Monte Carlo runs confirm that it is the best or nearly the best
length for a wide range of g (when searching for bumps of
FWHM near g).

5. THEORETICAL SIMULATIONS

We have developed the statistics S, by focusing on a generic
feature (regions of large gradient) which we hope to see in
many non-Gaussian theories. We should now test their ability
to distinguish simulated experimental results in specific topo-
logical theories from those of Gaussian theories. We have
available several sets of simulated 30° square skymaps from
various topological theories' (Coulson et al. 1994). We also
generated 5000 such skymaps for “standard” inflation-plus-
CDM (it is much easier to create maps from the power spec-
trum of a Gaussian theory than from the dynamical simula-
tions needed for a non-Gaussian one).

It is straightforward to apply the two-dimensional SP91
response function to the skymaps and obtain simulated experi-
mental results for each theory and calculate the value of S5
for each data set. The resulting probability distributions are
shown in Figure 5.

Clearly, textures give a radically different distribution than
inflation; in an experiment like SP91 it would be fairly
common to see texture skies give values of S;.4 high enough to
rule out inflation with great confidence. Of course, textures
also commonly give values of S5, which do not rule out infla-
tion; not every data set can contain a texture. Nevertheless,
degree-scale experiments, if they happen to cross a texture
boundary, are a good tool for detecting the non-Gaussianity of
the texture theory.

For monopoles and strings, the results are not nearly as
promising. The non-Gaussian features of these theories tend to
subtend much smaller scales than do unwinding textures, and

! These calculations assumed a fully reionized universe: calculations for the
case of standard recombination are still in progress.
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apparently need higher resolution experiments (or perhaps a
better statistical treatment) to be readily detected.

Incidentally, the distributions of S;,s and all other inter-
esting statistics we used were very similar for the simulated
experimental data from standard inflationary skies and for the
simple white-noise data sets we used in § 3. The statistics are
apparently not greatly affected either by correlations arising
from the inflationary power spectrum (no great surprise, since
the two-degree scale of this experiment is on the low-frequency
side of these theories’ power spectra, and taking a spatial deriv-
ative further shifts the spectrum toward high spatial
frequencies) or by correlations arising from the instrument’s
response function (again no surprise; the signature that we are
looking for is symmetric and thus orthogonal to the anti-
symmetric response function. Were we searching for point
sources rather than discontinuities, response-function-induced
correlations would be a more powerful confounding factor.)

We expect to have more trouble distinguishing Gaussian
from non-Gaussian theories when the Gaussian theory has a
large coherence length (for example, an inflationary theory
with a significant tensor-mode contribution; see Crittenden et
al. 1993.) To test this is an extreme case, we generated 5000
maps from the power spectrum of a theory driven entirely by
tensor-modes resulting in a very large coherence scale. As
expected, the distribution of S;.¢ for SP91 simulations made
from these maps suffered a great deal more overlap with the
texture distributions; it would be difficult but not impossible to
distinguish the two theories in practice.

6. EXPERIMENTAL RESULTS

We focus on a run of the UCSB SP91 experiment which
observed 13 points in four frequency channels (Gaier et al.
1992). Cosmological fluctuations should be frequency-
independent, so we can average the four channels to better
distinguish cosmological fluctuations from instrument noise
and, possibly, from astrophysical and atmospheric effects. The
mean of the four channels is shown in Figure 6.

We applied the statistic S3,4 to data from each of the four
channels and to their mean. We compared the results to our
simulated data sets for inflationary skies described in § 5 (after
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FI1G. 5—Probability distributions of S, for simulations of the SP91
experiment on skymaps drawn from four cosmological theories: “standard ”
inflation, textures, monopoles, and nontopological textures. Distributions such
as these can be constructed for any experiment and any theory, to determine
which theories are consistent or inconsistent with the value of S, 4 given by an
experimental data set.
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F1G. 6.—A set of results from the UCSB SP91 experiment. This shows the
temperature offset 6T, averaged over all frequency channels (25 GHz-35 GHz),
for each of 13 points separated by 2°1. UCSB SP91 is a single-difference
experiment, so these values actually represent (roughly) the difference between
the CMBR intensities at two different points.

adding Gaussian noise at the estimated experimental level, and
removing a best-fit line, as was done to the actual UCSB SP91
data.) The average of all four channels scores S;.¢ = 1.25, or
0.26% significance relative to “standard” inflation (that is,
only 13 of 5000 inflationary simulations give higher values of
§3.6. Note that this value is consistent with textures; as shown
in Fig. 5, S;.¢ exceeds 1.25 about 25% of the time in texture
simulations.)

We also compared the mean of the four channels to our
ensemble of simulated results from entirely tensor-mode-
driven inflationary skies; as mentioned in § 5, this theory has
an extremely long coherence length and should be more diffi-
cult to disprove using S3.¢. The mean of the four SP91 chan-
nels achieves 2.8% significance relative to tensor-mode
inflation; not entirely insignificant but not as strong as the
result for “standard ” inflation.

In addition to quoting these classical confidence intervals,
we can do a Bayesian analysis, in which the change in the
relative odds of theory A4 to theory B following a measurement
of a continuous observable X is given by the “ Bayes factor”

P(X | A)

PX|B)’ (10)

where the probability of observing X in the interval dX is
P(X| A)dX according to theory A and similarly for theory B.
Applying this method to the simulated distributions of ;.6
gives a Bayes factor of 17 for textures relative to standard
inflation (that is, readers who believe unquestioningly that the
SP91 data are a valid map of the CMBR, marred only by white
noise, and that our analysis of it is correct, would believe that
these data change the relative odds of textures and standard
inflation by a factor of 17, in favor of textures.) The Bayes
factor for textures relative to 100% tensor-mode inflation is
only 3.0, again in favor of textures.

Channels 1 and 2, taken individually, are roughly as non-
Gaussian as the mean of the four channels (S, = 1.26 and
1.20, respectively). Channels 3 and 4 are individually unre-
markable; they are consistent with every theory we tested.

It is worth asking if we could have achieved this (tentative
and qualified) rejection of “standard ” inflation with a simpler
statistic than S;¢. If we had used ordinary skewness, we would
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conclude the mean of the four channels to be non-Gaussian at
only 11% significance. Adding sliding window of length 6
would improve the significance to 5%, still not nearly as good
as the 0.26% significance achieved with S;.¢.

We chose S; (rather than some other S)) as the preferred
statistic for analyzing data sets because we expect the perceived
size of the gradient regions to be not much larger than the
lower limit set by the instrument response function (two or
three pixels). For comparison, Figure 7 shows the significance
levels at which all four channels, as well as their mean, can be
shown non-Gaussian by the various {S,}, with q ranging from
1 to 13. S, provides the strongest overall results, although
S,.3 and S4,¢ both outperform it on individual channels.

These results show that the UCSB SP91 data are signifi-
cantly non-Gaussian by these criteria, at least if we favor theo-
ries with reasonably small coherence scales. But non-Gaussian
data do not necessarily imply non-Gaussian cosmology. The
data sets contain a visible spike spanning about 2 pixels
(clearly visible in Fig. 6.) This could be the signature of a sharp
gradient generated by a non-Gaussian cosmological model,
but there are several other possibilities. These include galactic
foreground sources, extragalactic but noncosmological sources
(unlikely; such sources could not easily match the spatial struc-
ture of the data), or a systematic instrumental effect such as
sidelobe pickup. With UCSB SP91’s limited range of frequency
(25-35 GHz) there is not enough spectral information to reli-
ably distinguish astrophysics from cosmology (i.e., by fitting to
the spectra of synchrotron or bremsstrahlung radiation).
However, if a Gaussian theory with small correlations on 2°
scales, like standard inflation, is to be believed, we must assume
that the signal in points number 7 and 8 is noncosmological,
and remove those points from the data set. The fluctuations of
the remaining eleven points may then be used to impose con-
straints on the cosmological fluctuations. We removed a best-
fit line from the remaining points, because the line already
removed from the scan must be assumed invalid if two points
were contaminated. The remaining points have a y2 of 9.9,
quite reasonable for 9 degrees of freedom. We then compared
the rms to those of the simulated standard inflation data sets
(with points 7 and 8 likewise removed, and a new best-fit line
subtracted from the remaining points). After this procedure,
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FiG. 7.—Significance of non-Gaussianity vs. scale g for UCSB SP91 data.
The significance levels at which each of UCSB SP91’s four channels, as well
as the mean of these channels, can be distinguished from “standard ” inflation
by each of the statistics S 3,4, for 1 < g <13. 55,4 shows the best overall
performance.
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only six of the 5000 simulated data sets had an rms as low as
that of the mean of UCSB SP91’s four channels. We performed
the same procedure, removing points 6, 7, 8, and 9 (since points
near the bump may also be suspect) and found the UCSB SP91
data were quieter than all but 38 of the 5000 simulations.

If the UCSB SP91 data are indicative of the CMBR sky, the
standard inflation theory is caught on the horns of a dilemma.
If points 7 and 8 of the UCSB SP91 data are of cosmological
origin, the shape of the data appears non-Gaussian and thus
inconsistent with the theory. If the two points are contami-
nated, the measured rms is too low at high confidence. Other
Gaussian models can be tested in a similar way. Before claim-
ing that we have rejected any cosmological model, we must
wait to see if these methods demonstrate non-Gaussianity in
other experiments. Since these data are very limited in spatial
extent, sampling less than 0.1% of the sky, one should be cau-
tious about drawing conclusions.

7. OTHER EXPERIMENTS

84341y can be applied without modification to any single-
difference experiment. We recommend q = 3 unless the experi-
ment is oversampled or has a very short distance between data
points (well under the ~degree scale of the horizon at last
scattering.) In such cases one should try several larger values of
q to search for high-gradient regions typical of field ordering
theories.

For double- and triple-difference experiments, the character-
istic “bump” marking gradient regions will be replaced by
more complicated signatures representing higher derivatives of
a sharp gradient (as seen in Fig. 1). The ideas developed here,
with some modification, should apply to these experiments as
well. Recall that the procedure of S, involves convolving the
data set with a “square tooth” of width ¢, then adding the
third powers of the convolved data points within each sliding
window (see the section on optimal statistics for a discussion of
these steps.) For more complicated signatures, we need to
modify both the convolution function and the choice of the
third power.

The square tooth was a natural choice for the convolution
function because it approximates the “bump ” signature form
which we are looking for. We will continue to convolve with a
function or width q that approximates the signature form being
sought. Unfortunately, extra complications arise when the
gradient-signature being sought crosses zero (as it does for all
but single-difference experiments.) The statistics {S,} designed
to search for bumps with width of about g data points, were
fairly powerful for a wide range of other widths as well. But
when searching for a signature which changes sign, a slight
mismatch of widths can leave the statistic searching for a form
which is orthogonal to that actually present, thus canceling the
result. The more zero crossings the signature contains, the
more critical it becomes to use an accurate width. This requires
knowledge not only of the instrument response function but
also of the expected width of the gradient region on the sky.
The search for non-Gaussianity becomes uncomfortably
theory-specific.

Even if the width is chosen perfectly, the convolution of a
signature function with an approximation of itself will yield
several adjacent points which are strongly nonzero but alter-
nate in sign as rapidly as the signature itself does. If we added
the third (or any odd) power of these convolved points, they
would cancel one another. A simple solution is to raise the
convolved data to the fourth power rather than the third, suf-
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fering a slight decrease in resolving power (according to our
Monte Carlo simulations) but gaining robustness. For
example, in a third-derivative experiment, such as Dragovan et
al.’s Python (Dragovan et al. 1994), a sharp gradient might be
best resolved by a statistic of the form

S ~Z (¢ — 2xj41 + Xj42)*
J

The coefficients of x;, x;.,, and x;,, are fairly obvious
guesses, matched to the expected form of the data (Fig. 1). To
detect wider gradient regions or other signature forms, simply
use an appropriate approximation to the shapes shown in
Figure 1; for example, a bump of width four would respond to

S~ Z (6 = Xju1 — Xjuz + x)°
J

while in a double-difference experiment, gradient-signature
regions with width of about three data points would respond
well to

S~ Z (x;— xj+2)4 .
J

There is no need to modify the “sliding window ” scheme as
we look for more intricate signature forms; windows of length
3(q — 1) still work quite well.

We have performed Monte Carlo simulations which confirm
that statistics such as these are much more powerful than
simple skewness of kurtosis at detecting the signatures of sharp
gradient regions in double- and triple-difference experiments.
However, they are not as powerful or as robust as the methods
we have developed for single-difference experiments, so there is
another option that may be worth considering. Double- and
triple-difference results are often constructed in stages, starting
with single-difference data and combining adjacent points. It
may be best to look for regions of sharp gradient in the orig-
inal, single-difference data, where they will appear as simple
bumps and can be detected by the comparatively robust sta-
tistics {S,}. The disadvantage to this approach is that single-
difference results may be more vulnerable to systematic errors,
possibly to the point of being useless. We cannot predict in
general which approach will work best for which experiments.

8. CONCLUSIONS

We have proposed a class of statistics which should be quite
powerful in detecting a wide range of non-Gaussian features in
one-dimensional data sets. Their greatest potential vulner-
ability is that Gaussian data with significant correlations on
the scale of the spacing between data sets may be hard to
distinguish from non-Gaussian forms. This could occur in
cosmological models with unusually strong power spectra at
large angular scales (Crittenden et al. 1993), in experiments
with a short distance between data points, or in cases where
correlations introduced by the instrument’s response function
are similar in form to the non-Gaussian “signature” being
sought. Any of these factors may make conclusions harder to
draw, but they should not lead to false rejections of a Gaussian
theory, as long as the null data sets accurately model the
Gaussian theory and the instrument’s properties.

Our analysis indicates that the results of the UCSB SP91
experiment are in apparent conflict with “standard > inflation.
If, as the theory predicts, the CMBR fluctuations are Gaussian,
the non-Gaussianity of the data must be due to foreground
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contamination. If we discard the contaminated points (those
responsible for the non-Gaussian shape) we find a level of
fluctuations significantly smaller than the theory predicts. One
might worry about possible “conspiracies” here—a region of
foreground contamination is more likely to be flagged if it
coincides with a strong fluctuation in the CMBR. This makes
regions with strong CMBR fluctuations more likely to be dis-
carded and creates a possible bias toward low amplitudes in
the remaining points. However, this bias is negligible in theo-
ries with short coherence lengths (like standard inflation),
because the remaining points are very weakly correlated with
the removed points and thus still provide a fair sample.

G. Efstathiou generously provided us with a collection of
standard inflation-plus-CDM simulated data sets for the
UCSB SP91 experiment, which we used until we could gener-
ate our own simulations using power spectra generously pro-
vided by R. Crittenden and P. Steinhardt. We thank them, and
also M. Dragovan, T. Gaier, J. Gundersen, P. Meinhold, L.
Page, J. Peebles, J. Ruhl, D. Spegel, S. Staggs, and D. Wilkin-
son for helpful conversations. The work of N. T. was supported
by NSF contract PHY90-21984, and the David and Lucile
Packard Foundation. The work of P. L. and J. S. was sup-
ported by NASA contract NAGW-1062, the NSF CfPA and
the NSF-DPP.
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