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Abstract. We discuss an alternative algorithm to deal with many-point
data sets and show that, for the kind of problem we want to solve, it is
more robust, although a little slower, than the currently used algorithm
and can always present a numerical solution, based on the maximum
likelihood test. We describe the algorithm and the kind of data it is
suitable for. The basic idea is to avoid the inversion of large matrices,
usually the core of the algorithms currently chosen, by using the Singular
Value Decomposition method. Results of Monte Carlo simulations of full
sky maps and a comparison of both methods are discussed.

1. Introduction

The recent advances in space astronomy and astrophysics have created a demand
for more powerful computers and more “robust” data analysis softwares. As
an example, astronomical observations which map large portions of the sky,
and eventually the whole celestial sphere, will become natural, following the
development of the so-called satellite astronomy, complementing ground-based
observations. These missions generate very large data sets that demand large
amounts of memory to be handled, because the finer the information per sky
patch, the larger the storage matrices required by the data reduction/analysis
software.

Satellites have been used in various ranges of the electromagnetic spectrum,
covering from microwaves to vy-rays, with great success. For instance, one of the
most exciting questions in cosmology is concerned with the angular distribution
of the Cosmic Microwave Background Radiation (hereafter CMBR). By study-
ing the CMBR angular distribution and its properties, one can learn about the
density fluctuations that may have generated the large scale structures seen to-
day. Since the discovery of the CMBR in 1965 (Penzias and Wilson, 1965), a
large number of experiments have been contributing to the studies of CMBR
spectrum and angular distribution. Particularly, the COBE satellite FIRAS,
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DIRBE and DMR’s experiments have mapped the entire celestial sphere, study-
ing the spectrum and the angular distribution of CMBR (Mather et al. 1990,
Smoot et al. 1992). The software developed to analyze the data from the DMR’s
has to deal with very large data sets, when binning the raw data and also doing
a least square fit to a spherical harmonics series (Torres et al. 1989, Jansky
and Gulkis 1990). We present here an alternative algorithm using the Singular
Value Decomposition method, hereafter referred to as SVD, to deal with these
many-point data sets, show that it is more robust than the currently used algo-
rithm (known as the Normal Equations method, hereafter NE), and can always
present a numerical solution, based on the standard maximum likelihood test.

2. The Algorithm

One way to do CMBR anisotropy experiments is to collect data that are dif-
ference temperatures of two sky regions, as the DMR’s do. In order to convert
the measurements of temperature differences in a map of the sky it is necessary
for some manipulation of the data. The general idea is to find a temperature
distribution 7; which minimizes the x? of the map compared to the actual dif-
ference data. One can use, for instance, a linear least squares algorithm used to
fit the data set (pizel;, T;) to a spherical harmonic series. The data set we deal
with is a set of sky temperatures in 6144 pixels distributed over the 6 faces of a
cube — the quadrilateralized sphere (Chan and O’Neil 1986), and these pixels
are easily converted to the true spherical angle pair (8,¢) (or right ascension and
declination; galactic latitude and longitude, for example). The figure of merit
defined to analyse the goodness-of-fit is the usual x? test:
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where T is the sky temperature at a pixels (obtained as a combination of vari-
ous DMR measurements around a given position in the sky), ZQ’_’__I a;Yy is the
general spherical harmonics expansion and the pixel k is associated to 6 and
¢, the true spherical angles. What one usually sees in the literature is the use
of NE when trying to fit a temperature distribution into its eigenmodes (Lubin
and Villela 1986, Smoot et al. 1991). However, the reason that led us to search
for an alternative algorithm was the instability in the matrix inversion behavior
in our least square fits. Specially after removing part of the celestial sphere,
the basis functions become non-orthogonal and there is a mode mixing among
different multipole components. Nevertheless, SVD handles this problem quite
elegantly, while keeping the y? low. We also discovered that, for low-order fits,
both algorithms run at about the same speed. Actually, for1 < 5, SVD is faster
than NE (for 1=2, tsyp = 0.089min and ¢y F = 0.178min). Both algorithms
can run fits up to order 1=18 (limited only by the machine’s memory), which,
naively, represents the division of the celestial sphere into 10° patches. Following
Press et al. (1992) and Strang (1982), we define the weighted basis functions
and the weighted data points as
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(with A generally M x N, M > N). The basis functions chosen are the spherical
harmonics and, among various possible ways to generate the P, we chose one
described in Abramowitz and Stegun (1972), and coded in Press et al. (1992).
The chosen recurrence relation is:

(I-m)P" =z -1)FZ - (I+m—-1)PZ,, (3)

forI>m, m>0and -1 <z <1 (z = cosb, as usual). Please see Press et al.
(1992) for a detailed discussion of the stability test for recurrence relations.
The difference between NE and SVD comes mainly from the singularity
handling branch in the algorithm. Both algorithms solve a set of simultaneous
linear equations that map the data vector b into the solution space, through
the A matrix performing the linear transformation from one space to the other.
However, if A is singular, the vector # will be partially mapped onto b, and the
"misbehaved” part of it will be mapped in a null subspace. SVD constructs
orthonormal basis for both the null space and the mapping space, and the set of
solutions we obtain tells us if b lies in the range of A or not. If it does, then the
problem will have a solution coming from the A mapping, plus a linear combi-
nation of vectors in the null space (more than one solution). If we want to single
out a specific one, the best approach is to throw away the linear combination of
vectors in the null space. Following this approach we minimize the residuals of
the fitting » = |A-z —b|, and in throwing away the solutions included in the null
space, we discard either round-off errors or non-suitable sets of basis functions.

3. Monte Carlo Simulations

We have done a number of Monte Carlo simulations to verify the stability of the
algorithm. We simulate the sky as it is seen by the DMR experiment, including
higher order multipole terms, run the program and check the x?2 of each fit. The
residuals from the multipole recovery are very small (~ 1.5% in the worst case),
and the x2/DOF ~ 1, for a sky fitted to standard amplitude spherical harmonics
(as defined in Jackson 1975), using different noise levels. A noise level of 1 means
the noise has roughly the same amplitude as the dipole and quadrupole. We also
observed the behavior of both algorithms when fitting a simulated DMR map
to quadrupole and higher order multipoles. The behavior of both algorithms for
different 1’'s was tested both with uniform (¢ = 1) and non-uniform, simulated
sky coverage. No galaxy cuts were performed on these tests, and we found that
the x2/DOF for both lies between 0.9 and 1.1. We also studied the stability
with the galactic cut, and found that the SVD fit is reasonably more stable to
the removal of portions of the celestial sphere, as opposed to NE. For a 30° cut
out off the equator plane, the NE x?/DOF is 3.6, more than 3 times the SVD
value (1.16). On the other hand, considered as a major disadvantage, the time
spent in high order fittings ({ > 10) can be as much as 5 times longer for SVD
than for NE. A more detailed study of the method, including the covariance

matrix and mode mixing analysis will be published elsewhere (Wuensche et al.
1994).
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4. Conclusions

One of the interesting features of SVD is the automatic computation of an
orthonormal set of basis functions. Trying to do a straight Gram-Schmidt or-
thonormalization procedure is a slow and error-prone process, as pointed out by
Wright (1993). Using the SVD method, it is possible to decompose the input
matrix A into three “orthogonal” matrixes U(NzM,N > M, returns the de-
sired orthogonal functions), W(Ma M, diagonal, contains the singular values),
and VT (MzM, used to compute the covariance matrix and the fitting coef-
ficients), and the new orthonormalized functions are generated automatically
during the execution of the SVD process.

SVD was proven to be efficient and robust, and is a good alternative to the
generally used NE. To compensating the time disadvantage, it offers the stability
of the algorithm, and the automatic computation of a new set of orthonormalized
basis functions (analogous to a Gram-Schmidt method) in a single pass. Further
studies are necessary to better understand the mode mixing problem, and will
represent a major step towards doing harmonic analysis on sky maps.
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