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ABSTRACT

The Far Infrared Absolute Spectrophotometer (FIRAS) is one of the three
instruments on the Cosmic Background Explorer satellite, launched on
November 18, 1989. The instrument compares the diffuse IR and
microwave background radiation from the Big Bang origin of the universe
against an accurate blackbody. The sensitivity and accuracy of the.
instrument are sufficient to detect deviations from blackbody form that
are less than 1/1000 of the peak blackbody brightness, for each 5%
spectral element and each 7° pixel. The overall spectral range is from 1
to 100 em™!. The instrument and calibrator designs and procedures
required to meet these goals are described.




1 INTRODUCTION

We describe the calibration algorithms and analyze the performance of
the calibration reference blackbody for the Far Infrared Absolute
Spectrophotometer (FIRAS) instrument on the Cosmic Background
Explorer (COBE) satellite. The paper gives the instrument and calibrator
designs, the detector gain compensation algorithm, the linear photometric
algorithm, a discussion of photometric errors, the thermal accuracy
requirement, a brief description of the beam profile determination, and an
analysis of the performance of the calibrator itself.

The COBE (1 ,2 ,3 ,4) was launched on November 18, 1989 on a Delta
rocket, and carries two instruments to measure the spectrum and
anisotropy of the the 2.7 K remnant of the Big Bang, as well as an
instrument to measure the shorter wavelength diffuse IR, background light
of the universe. These instruments will make orders of magnitude
improvements in the sensitivity and accuracy of the measurements.

The FIRAS spans the frequency range from v = 1 to 100 cm™, has a
spectral resolution Av/v>3% limited by beam divergence, unapodized
Av> 0.1 cm™! limited by the maximum path difference of 5.6 cm, a
circular beam profile 7° in diameter, and an rms sensitivity and accuracy
specified as better than vI, = 107 W/cm?sr for each resolution element
in frequency and each 7° pixel on the sky. This sensitivity is
approximately 0.1% of the peak brightness of a 2.7 K blackbody. Our
calibrator design is estimated to be at least 10 times more accurate than
this specification. The thermometric accuracy is specified as 0.001 K.

The FIRAS contains a Fourier transform spectrometer based on the
Martin-Puplett (5) polarizing form of the Michelson interferometer. It is
fully symmetrical, with complete separation of the two input and two
output ports. This design has many advantages. It permits an extremely

large étendue of 1.5 cm?sr, and hence allows operation at irequencies as
low as 1 cm~!. It is a multiplexed instrument, allowing many wavelengths
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to be measured simultaneously with the same detector. Its symmetrical
design allows differential operation, instantaneously comparing the input
with a reference input and modulating the difference. Its maximum
optical efficiency is determined by the polarizers, which are quite effective
up to frequencies of about 1/4g, where g is the spacing of the polarizer
wires. The FIRAS polarizers are made of 20 micrometer tungsten wires,
plated with gold, and spaced on 53 micrometer centers, giving some
response up to about 100 cm™!. '

The radiation accepted from the sky is defined by a Winston cone, also
known as a compound parabolic concentrator (6 ,7) , and refocusses it
with an elliptical cone. The cone, designated the Sky Horn, is connected
to a flared section like a trumpet bell, which suppresses diffracted
sidelobes over a very wide spectral band. A ray trace of the concentrator
has been reported (8) , and measurements of the sidelobes have been
reported (9) . According to these measurements, sidelobe response will be
negligible except for the Moon when it 1s within about 30° of the line of
sight.

Calibration of the instrument is made using a full beam external
calibrator blackbody which can be moved into the aperture on command.
The entire accuracy of the instrument is dependent on this calibrator, so
most of this paper is devoted to a description of it and an analysis of its
errors. The calibrator temperature is controlled by a thermometer -
heater servo loop, and is stable within 0.001 K at 2.7 K. The temperature
range is from 2 to 20 K and is monitored by 3 germanium resistance
thermometers in a separate self calibrating AC ohmmeter circuit.

The shape of the calibrator is illustrated in Figure xx. It is shaped like a
trumpet mute, with a central peak and a single groove, each with a full
angle of ¢ = 25° . It is machined from two castings of Eccosorb (10)
CR-110, one for the central peak, one for the remainder. This Eccosorb is
an epoxy loaded with extremely fine iron powder, with a small admixture

of Cab-o-sil, an even finer silica powder. The silica powder makes the



liquid epoxy thixotropic, so that the iron powder does not settle during

the curing process. The optical properties of the Eccosorb have been
reported (11,12 ,13) .

The calibrator is backed by corrugated high purity copper sheets, with
saw cuts across the corrugations to give flexibility in both directions. The
copper is glued to the Eccosorb using more Eccosorb as adhesive, taking
care to have enough adhesive to penetrate the saw cuts in the copper but
not to cover the copper. This design allows the differential thermal
contraction of the two materials to occur without exceeding the bond
strength. Over the outside of the copper is placed an aluminum foil cap,
since the Eccosorb is not entirely opaque and there are gaps in the
coverage of the copper sheets. The outside of this structure is covered
with a multilayer insulation blanket, containing xx layers of aluminized
Kapton separated by layers of Dacron net. This insulation is required
because a portion of the calibrator is exposed to infrared emission from
warm portions of the spacecraft.

In addition, the second input of the instrument is filled by a temperature
controlled blackbody at the input of a small version of the Sky Horn. This
Internal Reference is adjusted to null the signal from the prime input,
reducing the dynamic range of the instrument by at least a factor of 100.
The temperatures of both concentrators are also controlled and
commandable from 2 to 20 K. The reference input concentrator and
blackbody produce the same étendue and focusing as the primary input
concentrator.

The entire instrument is operated in a vacuum, and is cooled to a
temperature of about 1.5 K by conduction to a superfluid liquid helium
tank. The cryostat is essentially identical to that used in the Infrared
Astronomical Satellite (IRAS), and was manufactured by the Ball
Aerospace Division. The satellite spins at 0.8 rpm about its symmetry
axis to satisfy the requirements of the other two instruments, and the

FIRAS line of sight is along the spin axis. The orbit is circular, at an



altitude of 900 km, and is inclined 99° to the equator, with a node
crossing time of 6 am and 6 pm. The spin axis of the COBE is maintained
94.5° away from the Sun, and points approximately to the zenith. A
large conical shield protects the cryostat and instruments from direct
radiation from the Sun and the Earth. The Sun never illuminates the
instruments or cryostat, but the COBE orbit inclination combined with
the inclination of the Earth’s equator to the ecliptic do allow the Earth
limb to rise a few degrees above the plane of the instrument and sunshade
apertures during about 1/6 of the orbit for 1/4 of the year. The edge of
the shield is coplanar with the entrance apertures of the cryogenic
instruments, so there is no geometrical view factor for radiation from the
shield itself into the instruments.

2 DETECTOR GAIN COMPENSATION
ALGORITHM

The FIRAS detectors do not have constant gains or time constants
because they are not temperature controlled and because they can be
used under large signal conditions. They are not temperature controlled
for simplicity of construction and reliability, and because temperature
control would require raising the temperature and sacrificing sensitivity.
There is thermal crosstalk in the instrument, in that variations of the
calibrator and beam defining concentrator temperatures, the mirror
scanning length, and the operation of the other instrument in the cryostat
all change the detector temperatures quite substantially. Over the range
of temperature from 1.5 K to 2.5 K the detector gains change by a factor
of xx. This gain variation must be compensated before the photometric
calibration can be done.

The detectors for the FIRAS are large area composite bolometers (14) ,
~ constructed of a diamond octagon 7.8 mm across and 25 micrometers
thick blackened with a coating of chrome-gold having a surface resistance
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of about 267 Q/square. The temperature of the diamond is determined
with a silicon resistance thermometer having approximately 10 Mf}
resistance, and is biased with DC current through a cryogenic wirewound
load resistor of 40 M. There are 4 detectors, two on each output of the
interferometer. These two view beams separated by a dichroic filter
having a split at 20 em~'. The high frequency detectors have about 7
msec time constants, and two low frequency ones about 50 msec time
constants. Sensitivities are about 5 x 107'* W/Hz!/? for the low frequency
detectors, and 1.5 x 10! for the faster ones.

The detectors are described by equations giving the heat capacity,
electrical resistance, and conducted thermal power as a function of
temperature. In addition, it has been found that the electrical resistance
is also a function of the applied electric field. In all of these cases, a
simple functional form with a few parameters describes the properties
well, so a detector gain model may be constructed and fitted to the
detector data (15 ,16 ,17) . These equations are:

R(T, E) = Ryexp(To/T)"/*(z/ sinh(z)), (1)
z = eEf/akgT, (2)

W(T,T.) = Wo(TP+! — TS+1), (3)

C(T) = CoT", (4)

E=Ey,—IZ, (5)

E = R(T,E)I, (6)

C(T)dT/dt = Q + EI - W(T,T.). (7)

In these equations, R is the detector resistance, Ry is a constant giving
the detector resistance at infinite temperature, Tp is a characteristic
Wm&mﬁﬁmﬁmﬂ&iﬁmﬁ%—

variable expressing the degree of nonideality of the detector resistance, E



is the voltage across the detector, e is the electron charge, ¢ is a
characteristic hopping length for carriers in the detector element, a is the
length of the detector, kg is Boltzmann’s constant, and T is the
temperature of the detector. The function W gives the power conducted
out of the bolometer element by the leads, Wj is a constant, T, is the
detector housing temperature, 3 is expected to be about 1 for metallic
leads, C is the heat capacity, Cp is a constant, and v is a constant
expected to be about 3 for a nonmetallic crystal. Ej is the bias supply
voltage, I is the detector current, and Zz is the load impedance. The
differential equation is simply the thermal balance equation, where ¢} is
the absorbed radiant power to be determined.

The DC equilibrium detector voltage was measured as a function of
temperature and current, giving the static parameters. Heat capacities
were determined from the electrical transfer function, measured from an
AC input voltage applied at the load resistor to the detector output
voltage. Fitting accuracies are typically 1% for the low frequency
detectors and 3% for the high frequency detectors, which have larger
nonideal effects (values of z). An improved fit might be obtainable using
a more complicated function for the nonideal resistance, such as replacing
(z/sinh(z)) with (z(1 + @)/(sinh(z) + sinh(ez)). This allows for more
than one characteristic hopping length scale.

The detector model is used for data analysis in two ways. The first and
simplest way is to compute the small signal parameters Sy and 7, so that
the frequency dependent responsivity is

S(w) = So/(1 + jwT.). (8)

The incoming interferograms are Fourier transformed and corrected for
this computed responsivity in the frequency domain. The values of Sp and
r, are determined from the commanded detector current, the measured
DC voltage on the detector, and the measured detector housing

temperature.



The second method is a direct solution of the differential equation for the
detector, and is valid for large signals as well. The signals can become
large when observing the Moon or the calibrators when they are hot. The
maximum signal the instrument can record is 0.1 V AC, which is not
small relative to the bias voltages of 0.4 V for the low frequency and 1.4 V
for the high frequency detectors.

The data stream gives us the voltage E, and the bias voltage on the load
resistor and the temperature T, are also known. The voltage E is
composed of two parts, 2 DC voltage and an AC voltage which are
telemetered separately and then added in the computer. From E, we
compute I from the detector load resistance and the bias supply voltage.
From E and I we compute the detector temperature T, from the full
nonideal expression for the resistance. From T we compute W and C, and
the derivative dT'/dt is computed with a Fourier transform method to
guarantee agreement with the small signal formulas. The remaining
variable is () which is now deduced.

The accuracy required of the detector gain algorithm is a few percent,
given by the ultimate accuracy desired and the signal suppression achieved
by the differential operation of the instrument. At the low frequency end
of the range (1 to 20 cm™!), the sky is expected to approximate a
blackbody, so that an effective null can be achieved with the internal
reference body temperature at about 2.7 K. Moreover, the calibration at
these low frequencies can be achieved without raising the calibrators to
high temperatures and changing the detector temperatures greatly.

On the other hand, the high frequency portion of the range requires
relatively warm blackbody calibrators and hence large thermal crosstalk.
The validity of the detector algorithm and parameters will be verified by
the linearity of the calibration of detector spectral output versus
blackbody brightness at each frequency. The Moon will be observed
frequently, and its spectrum is already known. Jupiter will also be

observed, but is barely detectable.
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3 CALIBRATION ALGORITHM

3.1 Linear analysis

The photometric calibration is assumed to be linear after correction for
~ the detector gain variations. The calibration method implements the
following formula:

I, = G)[D(v) + Z; ai(v)B.(T3)], (9)

where I, is the complex Fourier transformed interferogram for spatial
frequency v, G(v) is the complex gain function of the interferometer,
including factors for the detector, preamplifier, analog filtering and
amplification, and digital prefilters, D(r) is a constant photometric offset
arising from unmeasured causes, the summation }~; is over the possible
sources of radiation entering the instrument, ¢;(v) is the effective
emissivity of each such source relative to the external blackbody
calibrator, and B,(T}) is the Planck blackbody function for the
temperature of the ith source. We have included terms for the external
calibrator (for which € = 1), the internal reference body (for which

€ =~ —1), the "sky horn” parabolic concentrator (for which

e o (v/1 em™)1/2] and the equivalent for the reference side with e &~ —¢
(sky horn). The negative effective emissivities result from the differential
nature of the instrument. We have not been able to measure a separate
term corresponding to the temperature of the interferometer structure,
since this temperature does not change very much in normal operation,
and its effects are included in D(v).

The aim of the calibration is to measure the functions G(v), D(v), and
€&:(v). The function G(v) is determined from measurements of differences
of spectra taken with different temperatures of the external calibrator,
since its € is assumed to identically unity. The functions D(v) and €(v)
AIrc dElLC cl DY VvVdl'y L » EINPEratuIres o 3N 1€ CO1] Oltablebodle

and making a least squares fit. We have the option of giving different
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weights to different temperature combinations, so we can force an
accurate determination of D(v) at the standard operating condition. This
standard operating condition will have all controllable bodies at the same
temperature as the nominal cosmic background radiation temperature,
approximately 2.7 K.

Initial determinations of the calibration functions are shown in Figs xx.
They are derived from a limited amount of preflight data, and will be
replaced with inflight calibrations after launch. Such recalibration is
essential since the instrument alignment may change during the launch
vibration. The function G(v), combined with the measured noise levels
from the detectors, may be used to predict the ultimate sensitivity of the
measurements. These predicted sensitivities are shown in Figs xx. These
sensitivities meet the requirements of the Project.

The photometric linearity assumption is only approximately correct, and
the following known nonlinear effects will be investigated from the flight
and ground calibration data. In addition, the detector gain model may
not represent the detector perfectly.

3.2 Subharmonic Responses

Spurious harmonic and subharmonic responses have been neglected in the
calibration algorithm, since measurements show that they are small, less
than 1%. A subharmonic half-frequency response can occur in the FIRAS
because both mirrors move instead of only one, and interference can occur
between waves scattered from fixed structures and waves travelling the
normal paths. This is not expected to be important for wideband
incoherent sources, but it has been observed with coherent microwave
oscillator sources. Effects of such subharmonic response would be seen in
the calibration process as deviations on the Rayleigh-Jeans side of the
peak.

3.3 Harmonic Responses
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Harmonic responses can occur from waves making multiple passes through
the FIRAS. These are potentially important because the aperture stops
are reflective concentrator cones rather than black baffles. They have also
been observed with microwave oscillators, but not with far IR laser
inputs. These effects depend in detail on the ray positions and angles,
since the nominal design calls for perfect coupling between the sky and
reference blackbody to the detectors. Ray traces show that about 20% of
the light from the inputs does not reach the detectors because of
aberrations (xx), and a similar fraction of light reflected from the detector
region may be returned to the interferometer by the input cone. Hence,
one may expect that a few percent of the light reaching the detectors has
been modulated 3 times by the interferometer. Effects of such harmonic
response would be seen in the calibration process using blackbody
sources, as deviations from linearity on the Wien side of the peak.

3.4 Baseline Curvature

The FIRAS interferometer has such a large étendue and beam divergence
that its transmission efficiency depends significantly on the positions of
the reflecting mirrors, changing by about 1/2 % over the stroke. As a
result, the total power reaching both sets of detectors is not quite constant
as a function of path difference, and each interferogram appears to be
built on a curved baseline. The Fourier transform of this curvature has
most of its energy at very low frequencies. In effect, each input frequency
produces a spectral ghost at very low frequencies. To remove these effects,
a fourth order polynomial is fitted to the interferogram and subtracted
prior to further processing. This is equivalent to a digital high pass filter.

3.5 Improper phases

Our method assumes thi: G(v) can be complex but that the e;,(v) are
real. This is not necessarily accurate, since the interferometer is not
perfectly efficient or ideal (18) . The method can be generalized by

allowing the €;(¢) to be complex, in which case our linear fitting
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procedure will determine them with their phases. Our phase functions are
determined from the external calibrator response, and the same phases
are used for all interferograms, so linearity is preserved.

4 EFFECTS OF VIBRATION ON
CALIBRATION

Vibration produces changes to the photometric calibration of the
instrument as well as producing spectrometer ghosts. These vibrations
produce phase errors because the servo loop driving the mirrors does not
have infinite bandwidth, nor do the electronics for the sampling circuits or
the detector. We use a fixed phase function to phase correct all
interferograms, so linearity is preserved in the presence of vibration. The
effective interferogram resulting from a vibrating instrument is then

I(z) = [ cos(2mve + ¢(x))S(v)dv, (10)

where ¢(z) = 2mvAz(z)is the random phase error function depending on
the path difference z, Az{z) is the position error of the sampling at
position z, and S(v) is the detected spectrum. We may expand this to get

I(z) = fleos(2mvz) cos(¢(z)) — sin(2mwvx) sin(4)]S(v)dv, (11)
which may be further expanded for small ¢ to give
I(z) & [ S(¥)dv cos(2rvz)(1 — ¢2/2) + Az(z)(dI(z)/dz) (12)

In the presence of a random vibration environment, and when a large
number of interferograms are being averaged together, we seek the
average effects of the variable ¢. We see that the first term (1 — ¢?/2)
gives a reduction of the gain of the system, according to the mean square

phase error introduced. Errors introduced by this gain change are
proportional to the signal level, which will be minimized by operating the
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instrument near null. If the vibration level is constant during the entire
mission, then its effects will be absorbed in the calibration factors.

The second term gives a random noise term which has zero mean, and
does not bias the resulting average interferogram. This extra noise term
will be minimized in the FIRAS operation by nulling the interferogram to
first order, except of course during calibration sequences. In addition, the
interferograms will be compared with one another before they are -
averaged together, and those that appear significantly different from a
representative template will be rejected from the average. The statistical
analysis of the noise resulting from this process will be derived from
comparisons of individual spectra to each other and to the mean. Since
the largest errors occur near the interferogram peaks, the noises in the
spectra will be strongly correlated from one frequency to another,
invalidating the usual expectations about smoothing a spectrum to
improve the noise level.

5 THERMAL ACCURACY
REQUIREMENT

The calibrator is designed to have no temperature gradient, by preventing
heat flows through it. The entire calibrator is supported from a copper
ring whose temperature is controlled, and this copper ring is attached to
the support arm. To confirm that there are no temperature gradients,
germanium resistance thermometers are installed on the ring and near the

tip.

The temperature gradient must be less than a few milliKelvin to assure

that the thermometers read a suitable average temperature. However, for

the purposes of comparing the spectrum with an ideal best fit blackbody,
~—the temperature gradient can be relaxed. An average of Planck functions

at a variety of temperatures is a Planck function of the average
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temperature, except for second order effects. These effects are
proportional to the second derivative of the Planck function with respect
to temperature:

< B, >= B,(Tx) + (1/2) < (T — T)? > (d*B, /dT?), (13)
Tn =< T >, (14)

where T is the temperature, and T, is the mean temperature. We define
z = hve/kgT, where h is Planck’s constant, v is the spatial frequency
1/, kp is Boltzmann’s constant, and # is the photon mode occupation
number. The second derivative may be evaluated as

(d*B,/dT?) = (2hc®?/T?)ze™(z + 2 — 2e” + ze®)/(e® — 1)°. (15)

As an example, at T = 2.7, we find that (1/2)v(d*B/dT?) is maximum at
v = 12 cm™!, and has the value 8.01x 107" W/cm? sr K?. With the
requirement that ¥B be accurate to 10714 W/cm?sr, we find that the rms
temperature variation must be less than 11.2 x 1073 K, 4 parts in 1000.
Conversely, if the cosmic background radiation is a mixture of blackbody

fields with this rms variation, the spectrum will be distorted at the 10714
W /cm?sr level.

6 BEAM PROFILE DETERMINATION

The beam profile will be measured using the Moon as a source. However,
accurate beam profiles are not required for the primary purpose of the
instrument, which is measurement of a nearly isotropic brightness. The
reason is that the calibration is derived from a full beam blackbody
calibrator, which simulates the geometry of the isotropic sky quite
precisely. The beam profile is only required for computing the brightness
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Approximate beam profiles were measured with coherent microwave
radiation at 32, 53, and 90 GHz, with a laser at 118 micrometers, and
with near IR and visible broadband radiation. They confirm that the
beam profile is close to the geometrical optics prediction at short
wavelengths, a 7° diameter circular beam. Sidelobes are described by
surface scattering formulae at short wavelengths, and by the Geometrical
Theory of Diffraction at long wavelengths. The main forward beam profile
deviates greatly from a circular top hat at long wavelengths where only a
few diffraction modes are accepted, at least when measured with a single
mode source and detector.

7 CALIBRATOR ANALYSIS

The external calibrator is the ultimate limit on the accuracy of the
instrument. It must produce the same radiation field that a perfect
blackbody filling the beam defining concentrator would produce. It must
have an accurately measured and uniform temperature, it must not leak
around the edge, it must not reflect or transmit radiation from '
significantly hotter or colder regions, and it must respond to temperature
controller commands. We have designed it to have a spectrum which is
blackbody within 10~'* W /cmZsr in terms of v, at a temperature of 2.7
K.

To achieve thermometric accuracy of 0.001 K, we calibrated our flight
germanium resistance thermometers against transfer standard
thermometers from the National Bureaun of Standards. To guarantee
preservation of this accuracy we read the thermometers with self
calibrating 14 bit AC (40 Hz) ohmmeters, and have provided 3 of them on
two separate ohmmeters.

7.1 CALIBRATOR AS PART OF A CAVITY
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The calibrator body forms a part of a cavity composed of four essential
parts: the calibrator (12 cm diameter), a highly reflective compound
parabolic concentrator (also 12 cm diameter, tapering to a small
aperture), the small aperture (7.8 mm diameter) leading to the
spectrometer, and the gap between the calibrator and the concentrator.
In this case, the most important source of radiation impinging on the
calibrator is the calibrator body, by way of reflection from the
concentrator.

The next most important source is the concentrator, whose direct

. emissivity toward the spectrometer is determined in the calibration
method described above. The radiation from the concentrator which
reflects from the calibrator would be an important error source if its
temperature were unknown, but fortunately it can be controlled and made
equal to the calibrator temperature. In that case, the calibrator and the
concentrator form a large isothermal cavity, whose radiation is very nearly
blackbody. The remaining errors arise from radiation entering from the
spectrometer at the small aperture, and from leakage around the gap
between calibrator and concentrator.

7.2 CALIBRATOR REFLECTANCE VIEWED FROM
SPECTROMETER

The spectrometer is a source of radiation, which can be measured directly,
or reflected from the calibrator and then measured. The spectrometer
structure and optical elements are composed primarily of aluminum. The
parts outside the optical beam are black anodized, but this treatment has
little effect on the far IR properties. The spectrometer is not perfectly
isothermal, since there are heat flows in the structure originating in the
detector preamplifiers, the motor that drives the mirrors, and the heaters
that control the concentrator and calibrator temperatures. Most of the
radiation produced by this structure and optics cannot be modulated by
the interferometer, since it does not enter with the correct direction

through the input polarizer and cannot be split coherently by the
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beamsplitter. Any radiation which can be modulated will be measured in
the calibration process and incorporated in the photometric offset
function D(v). As long as this radiation is a constant, or is correlated
with some measured temperature, it does not cause a photometric error.

An error can arise, however, when the emission from the spectrometer
enters the cavity of the combined calibrator and concentrator, reflects
from the calibrator, and returns to the spectrometer. This radiation
would not return if the calibrator were removed from the concentrator, so
it cannot be determined in the calibration procedure. The beam of
radiation incident on the calibrator fills the aperture nearly uniformly,
and has nearly the same angular distribution as the beam profile, a circle
7° in diameter. Most of this incident beam is absorbed on its first bounce
on the calibrator, so higher order paths are negligible.

Only a small portion of the beam incident on the calibrator can scatter

back into the ray bundle accepted by the concentrator and the
spectrometer. For comparison, if the calibrator were a flat Lambertian
scatterer with total reflectance R s, the fraction of the incident beam
accepted by the spectrometer would be f = Rys{}/7, where the solid
angle of the accepted beam is §2 = 7 sin?(¥/2), and # = 7° . Numerically,
Q/m=3.7T%x 1073,

7.2.1 DIFFUSE SURFACE REFLECTANCE

The surface texture appears similar to that of a machined metal surface
having a surface roughness of ¢ = 5 micrometers rms. We approximate
the calibrator diffuse reflectance by '

Roury = 4Rn(Q/) sin(¢/2)(ck)?, (16)

where k = 27 = 21/ ) is the wavevector, R, ~ 0.1 1s the normal
reflectance of a polished surface, ¢ = 25° is the full angle of the cone and
. . o -+ of
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find R,u-; = 3.2 x 1077, quite negligible, showing that a more exact
calculation is unnecessary.

7.2.2 BACK SURFACE DIFFUSE REFLECTANCE

The Eccosorb is not thick enough to be entirely opaque, so the back
surface is partly visible through it. The back surface is partly covered with
irregularly shaped copper foils. We take its surface reflectance to be unity
with an angular distribution which would appear Lambertian if viewed
through a completely transparent Eccosorb. We think this is conservative,
in the sense that much of the scattered radiation would be trapped inside
the dielectric. Based on the formulas given above, we should have

Rpaer = (Q/m)T 272, (17)

where T, = 1 — R, is the transmittance of the front surface, a is the
measured absorption coefficient of the material, and ¢ is the thickness
(1.27 cm). Cryogenic measurements showed that o = 0.3 + 0.45 v over
the range of frequencies used here, and the surface reflectance is

R, = 0.08 + 0.06/v, where v is measured in reciprocal centimeters.
Evaluating this at ¥ = 1 cm™!, we find Ryqcx = 4.1 x 10~%. This number is
not npgligible, but decreases exponentially as the frequency increases.

7.2.3 SPECULAR SURFACE REFLECTANCES

To estimate the specular reflectance of the calibrator, we approximate it

by a V groove of the same included angle in an infinitely thick medium.

In this case, there is no mixing of polarizations, and all the angles of

incidence are known. A ray originating in the spectrometer will be

reflected 7 times before exiting the V groove, at angles from normal of

77.5, 52.5, 27.5, 2.5, 22.5, 47.5, and 72.5 degrees. We estimate the

refractive index from the normal surface reflectance R, and use the

Fresnel formulas to compute all the reflectances. Averaging over
——————polarizations gives Rypee = x 10~ at tem~tr —
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Only a fraction of the returned specular beam is directed back toward the
spectrometer. The horn defines a circular field of view of 7° diameter, so
one may consider that it sends a circular bundle of rays toward the V
groove. The circle comes back shifted over by 5° because of the
accumulated effect of the 7 reflections, so that it overlaps slightly with the
circle representing the rays that can be received by the instrument. The
fraction of the area that overlaps is computed as 14%. In other words, if
the calibrator were a V groove of two mirrors, 14% of the beam
originating in the spectrometer would return to it to be detected. Since
the actual calibrator is not a simple V groove, the overlap fraction could
be either smaller or larger, but the computation is not precise enough to
merit detailed attention.

A better estimate of the surface reflections would include the back surface
reflectance of the material as well. We approximate the back surface by a
smooth metal coating. The net reflectance is then

Rnet = |Ts + tzw/(l - ,w)|2’ (18)
where

w = e ot sec(ﬂ)e47riucoa(9) (19)

is the propagator for a round trip through the Eccosorb, r? = R,,t2 =T,
n is the refractive index, v is the spatial frequency, and 8 is the angle from
normal inside the material. The result of this computation is shown in
Figure xx, and is also not negligible at long wavelengths.

7.2.4 DIFFRACTION FROM EDGE AND GROOVE

The V groove and the calibrator edge are both sources of diffraction
which can scatter light back to the spectrometer. We apply the Geometric
Theory of Diffraction (19) (GTD) to the edge scattering as follows. We
have not attempted a full solution of the scattering problem for the

groove, which would involve a complex process of tracing many rays as
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they bounce off the groove faces, or solving the boundary value problem
for a groove with absorbing faces. Instead, we argue that an absorbing
groove should not scatter more strongly than a ridge, since the essential
thing is that there is a discontinuity in the boundary conditions for the
waves at the groove vertex. Aside from this discontinuity, the groove
should behave as in geometrical optics.

The outer edge of the calibrator is also an important scatterer. It is not
directly visible (according to geometrical optics) from the spectrometer
because of the flare of the concentrator, but at low frequencies, diffraction
around the flare permits coupling. Computations from the GTD show
that the flare produces almost no attenuation at the calibrator edge for
frequencies less than 50 cm™'. The reason is that the edge is not close
enough to the surface of the flare, nor far enough around the curve. We
expect a clearance of approximately 0.06 cm, which seems necessary to
prevent jamming the calibrator into the concentrator.

The groove and edge both produce specular beams, in the sense that the
diffracted waves all add up in phase when the angle of scatter is the same
as the angle of incidence with respect to the plane of the circular
scattering edge. However, there is not an especially large amount of the
total energy in this central peak. The diffracted radiation field is
estimated as follows. We start with Sommerfeld’s solution (20) for
diffraction at a straight edge of an opaque screen. We approximate the
groove or the ridge at the edge of the calibrator as a semi- infinite
metallic hollow cylinder illuminated from the open end, as shown in Fig
xx. Sommerfeld gives his solution as

u = ((1+4 )" [d(mkr)"/)(sec(p — a)/2 £ sec(d + a)/2), (20)

where the incident field is unity, r is the distance from the edge,
k = 2r/X, % is the angle from the screen surface to the outgoing ray, and
o is the angle from screen surface to incoming ray. In this geometry, both

¢ and a are 180° so the first secant is 1 and the second is -1. The & sign

21



must be chosen according to polarization state, being plus when the
electric field is perpendicular to the edge and - when parallel. As
expected, one of the two polarizations (the case where the electric field is
perpendicular to the scattering edge) does not diffract in the backward
direction. The edge has an approximately isotropic scattering behavior in
the backward direction, with a scattering effective width of about

nr|u|? = A/8x after averaging over polarizations.

To continue, we use the Geometrical Theory of Diffraction to modify the
straight edge diffraction formula to apply to a curved edge. Following the
usual prescription, the rays diffracted from the curve appear to diverge
from a caustic point or line a distance ryp away from the scattering edge.
For incident rays parallel to the axis of the circle, the caustic is on the
axis of the circle and is located ro = r; sin @ away from the circle, so the
diffracted amplitude is multiplied by the factor (ro/(r + ro))'/%. This
factor expresses the conservation of energy in a family of rays crossing
through the caustic points or lines. In the far field limit, fans of rays from
two opposite points on the circle reach the same angle off axis and
interfere, giving

I(8) = |vpr|* = (sec(¢ — @)/2 + sec(¢ + @)/2)? x (r1/27mk sin 8)(cos?(z)),
(21)

where I(6) is the scattering function with respect to solid angle, r; is the
radius of the scattering riﬁg, g is the scattering angle with respect to the
axis, and z = kr; sin@ describes the diffraction pattern. The singularity of
I(8) at 8 = 0 is not genuine, but is integrable over solid angle even in this
approximation.

To see how to evaluate at small angles, we recognize that the scattering
function should have a factor representing the interference of wavelets
from different points of the bright ring. It should be of the form

j' e"""d(p p— J" el-}wl mguua¢d¢ = JO(Z)
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~ (2/m2)? cos(z — m/4). (22)

Substituting this form in place of the most similar factors in the previous
expression for I(6) we find that

I(0) = (sec(¢ — a)/2 £ sec(¢p + a)/2)X(r /4)|Jo(2)|2. (23)

To get an approximate integral over solid angle, we replace cos® by 1/2,
neglect the variations of the secant functions, and average over the
polarizations. The maximum value of z is kr; and the solid angle integral
is then

Lioe = [ 2nI(6)sin6d6 = A(27ry)/(27)?
- Ascat- (24)

We use this equation to define the effective scattering area of the groove
or edge, A,cq:- In other words, the equivalent scattering width of the edge
is only A/(27)3.

The nearly specular portion of the diffractive backscatter allows the
spectrometer to see itself. For this we evaluate the solid/angle integral out
to 8 = 3.5° off axis, giving a smaller value of

Rdi'ff = Aspec/Aca[ ~ )\Gmaa;/z?'fzi"l. (25)

However, all this area couples the spectrometer emission back to the
spectrometer. It contributes a direct loss of emissivity of the calibrator
body, equal to Ry, which for A = 1 cm is 5 x 107 An estimate for this
effect is plotted in Fig. xx.

7.2.5 DIFFRACTION FROM THE POINT

Diffraction from the central peak of the calibrator is negligible and has
not been evaluated in detail. From dimensional arguments, one expects

the total scattering area of the peak to be proportional to the square of
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the characteristic length of the the wave variation, A/27 = 1/k, since this
is the only length available from which to construct something having the
dimensions of area. Comparing this to the calibrator area,

Apk/Acat = 1/m(kr()?, where ry is the radius of the calibrator, about 6 cm.
At a frequency of 1 cm™!, this ratio is 2.2 x 107%, and it decreases rapidly
as the frequency increases. This would not be detectable by our
instrument. On the basis of comparison to scattering at an edge, we also
expect to find that there is a dimensionless factor multiplying all these
numbers, with a value much less than one.

7.3 LEAKAGE AROUND EDGE

There is a gap between the calibrator and the concentrator to guarantee
free movement, about ¢; = 0.06 cm wide, which has an total area of 2% of
the calibrator area. This gap is sealed by two rings of aluminized Kapton
fingers, embedded in the Eccosorb and pressing against the concentrator,
as illustrated in Fig. xx. Each ring appears to make a perfect seal, but for
the purposes of estimation we assume that each transmits 3% of the
incident radiation. In that case, the effective area of the gap is reduced to

foap = 1.8 % 1073 (26)
of the total area of the calibrator.

In addition, the metallic covering of the calibrator does not extend all the
way to the edge. It leaves an exposed area about g; = 0.06 cm wide, which
permits radiation to enter the Eccosorb directly and be transmitted into
the spectrometer. The fractional area associated with this leak is then

fleak = (292/T)Tfe—at, (27)

where the length ¢ is about 2/3 of the total thickness of the calibrator, or
0.8 cm. At 1 cm wavelength, we estimate f = 8 x 1073, but direct
microwave measurements show that the actual response is much smaller

than this, approximately xx. For the curves in Figure xx, we have used
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this normalization and extrapolated to other wavelengths using the
attenuation coefficient in the material. Fortunately, there are no very
bright sources in the field of view at 1 cm wavelength.

Both of these leakage paths will be measured in the flight cryostat, using
emission from the warm crjrostat cover as a source. Its temperature can
be varied over the range from 10 K to 150 K by flowing cold cryogen
through pipes, and the resulting spectra will be measured. The emissivity
of the cover will be measured as well, by removing the calibrator and
observing the cover directly.

The important sources of radiation incident on the gap between calibrator
and horn in fight are the sky, the multilayer insulation blanket on the
outside of the calibrator, and other warm portions of the spacecraft.

7.3.1 SKY

The sky approximates a 2.7 K blackbody at long wavelengths, so when
the calibrator is at the sky temperature, the leakage radiation does not
affect the total calibrator brightness. At shorter wavelengths, there are
two very bright sources in the sky, the Galactic plane and the Moon. The
Moon has been observed with the calibrator in place and leakage will be
determined directly.

7.3.2 MULTILAYER INSULATION (MLI) BLANKET

The MLI blanket protects the calibrator from xx milliwatts of incident
heat from the warm sunshade and warm parts of the cryostat. In the
process, it heats up to a temperature of about 60 K in order to reradiate
the heat it absorbs. It is also a source of radiation in the passband of the
FIRAS, illuminating the gap between calibrator and concentrator. The
incident intensity can be estimated as:

I, = B(T,) x (0.003v'/2sec(() x A(, (28)
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where ( is the angle between the normal to the MLI surface and the
direction to the gap. The emissivity of the metal surface is proportional
to the square root of the frequency, as for standard bulk metal, and the
secant function expresses the variation of emissivity with angle. In this
case, ¢ & 90° , so A{sec(¢) = 1, and we obtain the same effective
emissivity as if the MLI filled the field of view at normal incidence.
Evaluating at v = 100 cm™!, vJ, = 6.4 x 1074 W /cm?sr.

7.3.3 OTHER WARM SURFACES

The same surfaces that radiate toward the calibrator and warm up the
insulation also emit in the instrument passband. However, tests of the
view factor from those directions into the region of the gap between
calibrator and concentrator showed that the attenuation was very large,
approximately xx. As a result, the MLI emission is the dominant error
source.

8 SUMMARY AND CONCLUSIONS

The calibration methods for the Far Infrared Absolute Spectrophotometer
(FTRAS) have been described and the accuracy estimated. The calibrator
accuracy is sufficient to meet the design requirement of A(vI,)< 1071

W /cm?sr, about a part in 10* of the peak brightness of a 2.7 K blackbody.
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