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ABSTRACT

Cosmic anisotropy produces an excess variance g5, in the AT maps produced by the Differential Micro-
wave Radiometer (DMR) on COBE that is over and above the instrument noise. After smoothing to an effec-
tive resolution of 10°, this excess, o,(10°), provides an estimate for the amplitude of the primordial density
perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo tech-
niques to express the amplitude derived from this statistic in terms of the universal rms quadrupole amplitude,
{Q2us>®>. The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam
cause the derived (Q2us>°> to be 5%-10% larger than would be derived using simplified analytic approx-
imations. We also investigate the properties of two other map statistics: the actual quadrupole and the
Boughn-Cottingham statistic. Both the o, ,(10°) statistic and the Boughn-Cottingham statistic are consistent
with the (QZus>%> = 17 + 5 uK reported by Smoot et al. (1992) and Wright et al. (1992).

Subject headings: cosmic microwave background — cosmology: observations

1. INTRODUCTION

Smoot et al. (1992) give 30 + 5 uK for the rms of the cosmic
microwave background based on Differential Microwave
Radiometer (DMR) maps smoothed to an effective resolution
of 10°. This value is derived from the excess variance found
using var (sky) = var [(4 + B)/2] — var [(A — B)/2], where
the (A + B)/2 map averages results from the two receivers at
each frequency in the DMR instrument, while (4 — B)/2 is a
noise map. These values are computed after the galactic plane
region is excised from the map, and a monopole plus dipole fit
to the high Galactic latitude sky is subtracted. Because spher-
ical harmonics are no longer orthogonal in the map with the
Galactic plane removed, one must modify the usual relation-
ship betewen ¢2%,(10°) and the amplitude of the primordial
perturbation power spectrum. For power-law density pertur-
bation power spectra of the form P(k) oc k", where k is a spatial
wavenumber, the rms microwave background anisotropy in
the Ith order multipoles is

I'll+ (n—1)/2]T'[(9 — n)/2]
I+ (5 —n)/2IT13 +n)/2]°

where the normalization is expressed in terms of the universal
quadrupole amplitude {QZys> (Bond & Efsthathiou 1987). The

AT} =0.22 + 1XQiws> M
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analytic formula for the 10° variance, o,,,(10°), is then
05(10°) = 12 AT? exp [ I + 1)/I2T, @
=2

where the smoothing cutoff is I, = 180°(81n 2)'/2/(10°%) = 13.5.
Equations (1) and (2) were used to compute the conversion
factor 04,,(10°)/<Qfus>®> = 2.0 £ 0.2 given in Smoot et al.
(1992), and an equivalent equation was used by Adams et al.
(1993) to convert o,,,(10°) into the bias at 8 h™* Mpc™%, bg.
These conversions must be corrected by 5%—10%, however,
because the smoothing term in equation (2) does not ade-
quately represent the combined action of the DMR beam and
the smoothing techniques used to calculate o, (10°). The
DMR beam is not a perfect Gaussian, and the extra smoothing
from the wings of the beam pattern reduces o,,,(10°). Further-
more, the monopole plus dipole removal performed on the
high Galactic latitude part of the maps also removes part of the
quadrupole and octupole which reduces o, (10°). In this paper
we give the filtering effect of the actual DMR beam as a func-
tion of multipole order I, a description of two computer pro-
grams that have been used to compute o, ,(10°), and the results
of Monte Carlo calibrations of these programs.

We also use Monte Carlo simulations to compute the
expected values of two other quadratic statistics of the DMR
maps: the actual Q2 and the Boughn-Cottingham statistic
described by Boughn et al. (1992).

2. DMR BEAM

The beam shape of the DMR horns has been approximated
by Smoot et al. (1992) as a Gaussian with a 7° FWHM. thisis a
reasonable description of the central lobe of the beam, but
neglects the sidelobes. Figure 1 shows eight separate traces for
the E” and H plane measurements of the four 53 GHz flight
horns by Toral et al. (1989), the average power response of

7 The E plane contains the horn axis and the incident electric field vector.
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FiG. 1.—The average 53 GHz DMR beam shape (heavy solid curve), the

eight individual E and H plane traces of the four flight horns (light dotted lines),
and the Gaussian approximation (dashed line).

these eight traces as the heavy solid line, and the Gaussian
model as a dashed line.

For the purpose of modeling the effect of the DMR beam
smoothing on stochastic models described in terms of spherical
harmonics, an expansion of the beam profile into Legendre
polynomials is needed. We have calculated the coefficients of
this expansion for the average of the measured beam profiles
using

G, = fl P(x)G(cos ! x)dx , 3)

where G(0) is the power transmission of the beam (i.e., G = 0.1
at 10 db down) and P, is the Ith Legendre polynomial. Since the
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F1G. 2—The Legendre coefficients of the average DMR beam (solid) and of
a7° FWHM Gaussian.

DMR is calibrated using whole beam signals—hot and cold
loads on the ground and Earth velocity signal in space
(Bennett et al. 1992a)—we have normalized the G,’s so that
G, = 1. The normalized G,’s are tabulated in Table 1. Figure 2
compares these values to a Gaussian with o = 2°973
(FWHM = 7°).

3. SMOOTHING METHODS

Smoothing the DMR maps gives a better estimate of cosmic
anisotropy because noise in adjacent pixels is essentially uncor-
related while cosmic signals are expected to have substantial
correlations over patches many pixels in size. In a simplified

TABLE 1

RESPONSES AS A FUNCTION OF | NORMALIZED TO 10*

1 G, G420 VD20*° vD30*¢ VG204 VG30°¢ VQ20>° VS20>f
10000 4288 0 0 0 0 0 0
9951 3988 0 0 0 0 0 0
9855 3703 9354 8483 8920 6659 9989 0
9714 3434 8567 6822 7940 4045 26 6342
9532 3179 9424 9442 9225 9261 3074 3478
9312 2940 9059 9196 8799 8617 10 3776
9058 2717 9096 9120 8864 8690 774 2646
8774 2508 8804 8778 8508 8141 4 2007
8465 2314 8543 8515 8166 8171 74 1441
8136 2134 8209 8132 7754 7714 2 1084
7791 1967 7856 7849 7340 7340 39 810
7435 1813 7473 7474 6882 6850 1 633
7072 1671 7094 7096 6450 6491 70 478
6705 1540 6686 6687 5987 6032 1 384
6338 1420 6291 6288 5550 5590 55 296
5975 1310 5879 5871 5102 5124 1 239
5617 1209 5475 5473 4669 4716 15 184
5268 1117 5070 5068 4245 4293 1 147
4929 1033 4673 4671 3840 3891 5 114
4602 956 4284 4281 3452 3496 0 90

2 Statistic: DMRSMUTH.

5 b, = 20°.

© b, = 30°.

d Statistic: GET_SKY_RMS.
© Statistic: Q2.

f Statistic: S.

© American Astronomical Society

e Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...420....1W

TIIA200 AW

Agd

No. 1, 1994

case where the cosmic signal is very weak and the observation
time per pixel is constant, the uncertainty in var (sky) is given
by

4

var [var (sky)] = 41—‘:]— , @)

where o is the noise per pixel in the sum and difference maps
(the same in both because the cosmic signal is assumed to be
weak), and N is the number of pixels. Smoothing the map by
averaging 2 x 2 blocks of pixels reduces ¢ by a factor of 2 while
reducing N by a factor of 4. The net effect is to reduce the
standard deviation of var (sky) by a factor of 2. The expected
value <aszky(10°)> is reduced by a much smaller factor for
cosmic models with substantial large-scale power, such as the
Harrison-Zel’dovich spectrum with equal power on all scales.
Thus smoothing the DMR maps with a smoothing kernel
having the same width as the DMR beam gives a useful esti-
mate of the cosmic anisotropy. Two distinct smoothing tech-
niques have been developed to smooth the DMR maps and
estimate g, (10°). The computer programs that implement
these algorithms, called GET_SKY_RMS and DMRSMUTH,
are available by E-mail from the first author.

3.1. Unweighted Smoothing

DMRSMUTH is the program used by Wright (1991) to
estimate an excess variance of 1024 + 450 uK?2 for |b| > 15°in
the 6 month 53 GHz maps (Smoot et al. 1991). This value is in
Rayleigh-Jeans temperature differences ATy;, related to the
desired Planck temperature differences AT, by

x2e*
ATy, = T ATy )

with x = hv/kT. The DMRSMUTH program smooths a map
using a quasi-Gaussian test function which has continuous
derivatives of all orders and is nonzero only in a small region,
thereby reducing the number of computations. To be precise,
the function is

1
S(6) = —8In2 -1 6
(0) = exp { i—sramren 1) ©
with 0. = 10°5. The FWHM of this function is 7°0, but it van-
ishes smoothly for all angles > 10?5. For a given input map, t;,
the smoothed output map T;is given by

Y150,
1TYLS0,)

where 0, is the distance between the ith and jth pixels. All sums
are done over a grid of 24,576 pixels. Since the DMR maps
have 6,144 pixels, each DMR pixel is copied into the 4 pixels in
a 2 x 2 block of pixels. After the entire sky is smoothed, the
Galactic plane with |b| < b, is discarded and a monopole plus
dipole is fitted and removed from the polar caps. The
unweighted variance of the residuals in the polar caps is the
result.

™

3.2. Weighted Smoothing

The second program, GET_SKY_RMS, was used by Smoot
et al. (1992) to compute g, ,(10°) = 41, 30, 30, and 30 uK in

sky'
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thermodynamic AT for the 1 yr 53 GHz maps with Galactic
plane cuts of 10°, 20°, 30°, and 40°. GET_SKY_RMS differs
from DMRSMUTH in several significant respects. The first
difference is the smoothing kernel: GET_SKY_RMS uses an
exact Gaussian with a ¢ of 3°000, so its FWHM is 7°064.
GET_SKY_RMS does its sums on the DMR 6144 pixel
grid. The second major difference is that GET_SKY_RMS
uses weighted sums in its smoothing. Let R(6) be the Gaus-
sian smoothing kernel. Then the smoothed map from
GET_SKY_RMSis

T, = Z [t:w; R(Oij)]/z [wi:R(0,)] . (8)

The input weights w; used above are set to zero in the region
|b| < b, before the smoothing is done. Thus for a new value of
b., the map must be resmoothed, while for DMRSMUTH all
values of b, use the same smoothed map. The weights W; for
the smoothed map are computed using the normal propaga-
tion of error technique:

W, = {Z [WiR(eij)]}2/Z[Wi R(eij)zj . )

A monopole plus dipole fit is removed twice: once before
smoothing using the weights w;, and then again to T, after
smoothing using the weights W,. Because the weights in |b| <
b, are set to zero before the smoothing, the pixels at edge of the
polar caps have only half the weight of pixels in the middle.
Furthermore, the centroid of the weight contributing to an
edge pixel is a few degrees away from the edge due to the
absence of pixels across the boundary. When compared to
DMRSMUTH with the same value for b, the effective Galac-
tic plane cutoff is a few degrees higher for GET_SKY_RMS.
Finally, the variance computed by GET_SKY_RMS also uses
the weights W;.

3.3. Response to Multipoles

Neither program knows the correct values of ay or a,,.
Thus when fitting for the monopole and dipole to remove from
the maps, both programs make a least-squares fit in the part of
the sky with |b| > b,.. In this region, the monopole is not
orthogonal to the quadrupole, and the dipole is not orthogonal
to the octupole. Thus the monopole plus dipole fit removes a
significant part of the quadrupole and octupole as well. In
order to quantify this effect, all of the spherical harmonics with
I < 20 were processed by each smoothing technique one at a
time. Let V},, be the variance given by the spherical harmonic
F,,., where we use real spherical harmonics normalized to unit
variance over the whole sky.® Thus for b, = 0 and no smooth-
ing we have V,,, = 1 for all / and m. Given the smoothing and
b. > 0, some of the V,,’s are very small while others are larger
than 1. The quantity required to estimate the average
responses of DMRSMUTH and GET_SKY_RMS to a cosmo-
logical model is the mean of V,,, over m:

) Vim
K‘y+1' (10)

Figure 3 shows this net filter function for the two programs
and for b, = 20° and 30°. In Table 1 the columns labeled VD20

8 These F,,’s are (4m)'/? times the functions defined in Smoot et al. (1991),
but note the typo: (1 — m)! should be (I — m)!
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1 T I B B L B B I I tabulated value when evaluating equation (11). From the slope
e ] of the curves in Figure 4 we can estimate an effective angular
I 4 scale for the g,,,(10°) statistic,
B8 =© —]
- . dln(a?/Q?)
L - lge = —_— . 12
B ] eff p I: on - (12)
6 — —
L 4 Note that . depends on the slope of the input spectrum, and
S o we have used an n = 1 slope. The values of [, are 4.16 and 4.29
B o | for DMRSMUTH with 20° and 30° galaxy cuts, compared to
4 N i 4.12 and 4.26 for GET_SKY_RMS.
o ﬁ_ 3.4. Monte Carlo Results
- n Monte Carlo skies are generated for power-law density per-
r 7 turbation power spectra, P(k) = Ak". In order to simulate the
oLt 1t 11 Lo b v b v vy effect of the binning within a pixel, the Monte Carlo skies are
0 5 10 15 20 generated on a grid of 24,576 pixels and then averaged in 2 x 2

FiG. 3—The average variance in the smoothed, dipole-removed map for
unit input variance in order l. Circles are DMRSMUTH and squares are
GET_SKY_RMS, filled symbols are b, = 20, and open symbols are b, = 30°.
The solid line shows the analytic formula for a Gaussian smoothing kernel
withe = 3°and b, = 0.

and VD30 give V; for DMRSMUTH with 20° and 30° cuts,
while VG20 and VG30 gives the values for GET_SKY_RMS.

With the appropriate smoothing functions for the beam G,
and the response of the smoothing techniques V;, we can revise
equation (2) to read

02,(10°) = l; AT} GEV,. (11)
The ratio of <(03,(10°)>/<Qkus> as a function of the spectral

index n is shown in Figure 4. We have approximated ¥, for
1> 19 and G, for | > 39 using Gaussians that match the last

1oll|llllllllllllj
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F1G. 4—The ratio of the excess variance of the smoothed sky to the quad-
rupole normalized power spectrum amplitude as a function of spectral index of
the power spectrum. The solid curves are for DMRSMUTH, while the dashed
curves are for GET_SKY_RMS. In each case, the upper curve has b, = 20°
and the lower curve has b, = 30°. The dotted curve shows the relation for a 10°
Gaussian beam with b, = 0 computed using eq. (1).

blocks to give the standard DMR map with 6144 pixels.

The first step in producing a random map is to generate the
(Imax + 1)? random amplitudes a,,,. These are generated using a
Gaussian random number function with zero mean and a
variance given by

I+ (n— 1)/2]T[O — n)/2]
T+ (5 —n)/2ITL3 +n)/2]

var (a;,) = 0.2 (13)

These values can be generated by setting var (a,,) = 0.2 and
then using

var (a,,)2l + n — 1)
2l—n+5)

var (@41, m) = (14)

The random sky is then generated using a set of real spherical
harmonics F,, that are normalized to have an rms value of
unity. With these functions, the sky is given by

T, ¢) = <Q%MS>O'5 IZ G ay, F1,(6, @) . 15)

The smoothing caused by motion of the DMR beam during
the 0.5 s sampling interval has not been included in these
Monte Carlo maps. The DMR scans 180° in the COBE spin
period of ~73 s, so this produces a boxcar smoothing with
width 1223 in the scan direction. Since most pixels are observed
with scan directions distributed fairly uniformly, this smooth-
ing can be approximated by a circular Gaussian smoothing
with o = 1923/(2 x 12)}/? = 0225, which has a negligible effect
(<0.1% in {Q2us>°3 for n < 2) on the statistics considered in
this paper.

We have constructed Monte Carlo skies using the formula
given in equation (15) with [, = 39. For each Monte Carlo
sky, we make two independent noise maps, for the A and B
channels of the DMR. We construct these noise maps using the
number of observations of each pixel N, (i) in the actual DMR
data maps. Thus each pixel i has an initial noise estimate n;
given by a Gaussian random variable with zero mean and
variance given by a7/N (i), where o, is the noise per observa-
tion of the DMR. We then make a small correction to these
noise maps to allow for the fact that the pixels within the map
are not perfectly independent. We take the sparse correlation
matrix A;;, which has diagonal elements equal to N, and
off-diagonal elements that are the negative of the number of
times a given pixel-pair (i, j) was observed. The corrected noise

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System
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TABLE 2

MEAN AND STANDARD DEVIATIONS OF 62,(10°), S AND Q* FROM MONTE CARLO CALCULATIONS COMPARED
To OBSERVED VALUES FROM THE 1 YEAR 53 GHz MaPs, IN PLANCK AT pK

MoDEL DMRSMUTH GET_SKY_RMS
B-CS 0?
Q2> |b| > 20° |b] > 30° 1b| > 20° |b| > 30° [b|>20°  |b|>20°
(1K) Noise (uK?) (K?) (uK?) (K?) 1K?) (1K?)

0 Y 0+ 147 0+ 168 0+ 121 0+ 137 0+24 0+25
13.60 Y 663 +237  628+260  633+222  S94+240 176 +79 216+ 153
16.66 Y 996 +303  941+326  948+290 8914309 264+ 110 324 +219
19.23 Y 13284373 1255+397  1264+360 1187 +381 351+ 141 431 +286
16.66 N 997+ 220  942+237 9441224  886+231  262+94  322+200
16.66 Y-N —1+ 198 ~1+228 44175 54197 2+ 54 2491
Observed............ 1200 1066 924 934 298 107

map is then given by
ny<n; — Z Aiini/Ay (16)

Jj#i

which is a first approximation to the inversion of A that is done
in the map-making process. The net effect of this correction is
to add the weighted mean of all the pixels in the 60° radius
reference ring to the value of the ith pixel. This correction has
an insignificant effect on o, (10°) but does increase the noise at
I =6 in the DMR power spectrum calculation of Wright
(1993). It also creates a small positive correlation at a separa-
tion of 60° + 5° in the autocorrelation function given in
Wright et al. (1992) that is not present in the cross-correlation
function in Smoot et al. (1992).

Five different combinations of {QZus>°> and noise level
have been simulated for each smoothing technique. These have
(QEus>%® =0, 13.6, 16.66, and 19.23 uK (Planck), with the
noise level corresponding to the 1 yr 53 GHz maps, and
{Q2us>%® = 16.66 uK repeated with no noise. For each of
these five cases, the same random noise and Harrison-
Zeldovich maps are smoothed, and then combined with
appropriate coefficients before evaluating o2,(10°). For a given
Monte Carlo realization, ¢2,(10°) is a quadratic polynomial in
(Q&us>%, so results for amplitudes other than the ones calcu-
lated can be obtained by interpolation. The mean and standard
deviation of ¢2,(10°) and other quadratic statistics from these
Monte Carlo realizations are tabulated in Table 2. All of these
results are Planck AT’s, and the maps have been corrected for
the kinematic quadrupole due to the second-order Doppler
shift, using the observed dipole to define our velocity relative to
the cosmic standard of rest (Fixsen et al. 1994; Kogut et al.
1993). From these values we learn several important results.

First, the mean values from the Monte Carlo realizations
agree with values calculated from equation (11) with errors
that are smaller than the 0.5% uncertainty in the Monte Carlo
means. In the n = 1 case these ratios are for DMRSMUTH
with |b|>20°, <03,(10°)>/<{Qfms> = 3.584 = 1.892% from
equation (11) versus 3.594 + 0.017 from the Monte Carlo reali-
zations; with |b| > 30°, 3.388 = 1.8412 versus 3.394 £ 0.017;
for GET_SKY_RMS with |b| > 20°, 3.395 = 1.8432 versus
3.403 + 0.016; and with |b|> 30°, 3.191 = 1.786% versus
3.195 4+ 0.017.

Second, the uncertainties in cases done without noise allow
us to calculate the ultimate power of these statistics for esti-
mating {(Qzys>%® when the integration time is much longer

than 1 yr. Equation (11) cannot be used to estimate the uncer-
tainty in ¢2,(10°). The ultimate accuracy of an estimate of
{(Qaus>®® based on 0y, (10°) from DMRSMUTH with
|b| > 30° will be a relative uncertainty on {QZus>®° of
0.5 x 237/942 = 12.6%, while from GET_SKY_RMS with
|b| > 20° it will be 0.5 x 224/944 = 11.9%.

Third, the uncertainties in the cases with noise can be used
to calculate the statistical uncertainty in {(Qgys>°-> estimated
from the current data set. To avoid double counting the experi-
mental uncertainty, no errors should be attached to the
observed values, since the noise is already included in the
Monte Carlo models. It is difficult to isolate a purely observa-
tional error since the effect of radiometer noise on 63 (10°)
depends on the true pattern of anisotropy AT(/, b) which 1s not
yet known. The differences between 63,(10°) computed with
noise and 03,(10°) without noise for (Qgws>°* = 16.66 uK are
given in the row labeled “Y-N” in the “Noise” column of
Table 2, and these represent the effect of radiometer noise on a
typical Harrison-Zel'dovich sky with {(Qaus>°> = 16.66 uK.
The standard deviations shown in this row are much bigger
than those in the {(QZus>%> = 0 case, showing that the effect of
radiometer noise depends on {(QZys>°:>. Clearly the effect of
noise will also depend on n. The current accuracy of an esti-
mate of (Qfys>°* based on o, (10°) from DMRSMUTH with
|b| > 30° is a relative uncertainty on {Qaus>®> of 0.5 x 326/
941 = 17.3%, while from GET_SKY_RMS with | b| > 20° it is
0.5 x 290/948 = 15.3%.

In Figures 5 and 6 we have plotted the cumulative probabil-
ity distribution of these Monte Carlo calculations after con-
verting the probability into a number of “sigma ” by inverting
the Gaussian cumulative probability function,

Py =—— | e <_y2>d
X)) = —F7 X
A RAE A

which is the probability that a zero mean, unit variance Gauss-
ian random variable will be <x. A straight line on these plots
indicates a normally distributed random variable. The slope of
the line is the inverse of the standard deviation, so the reduced
slope of the (Q2ys>%° > 0 cases compared to the (QZys>°> =
0 case shows the effect of cosmic variance. The curvature of the
lines, with slope decreasing as ¢,(10°) increases, indicates a
positive skewness in the distribution of 6%,(10°). An interesting
point to note is that the observed excess variance of the sky
deviates from the blank sky case by more than 6 g, even though
we have only a 3 ¢ determination of {QZys>-

17)
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FiGg. 5—The distribution of excess variances determined by

GET_SKY_RMS in |b| > 20° for Monte Carlo skies with spectral index
n=1, {Q2ys>%* =0, 136, 16.7, and 19.2 pK with the 1 yr noise, and
{Qaus>%° = 16.7 pyK with no noise (dashed). The y-axis is the cumulative
probability distribution function from the Monte Carlo’s converted into a
number of “sigma” by inverting the Gaussian probability distribution func-
tion P(y), the probability that a zero mean, unit variance Gaussian random
variate will be less than y. The vertical line is the observed value.

4. BOUGHN-COTTINGHAM STATISTIC

The Boughn-Cottingham statistic (Boughn et al. 1992) is a
weighted least-squares fit of a line to the cross-products of
pixel pairs, based on an expected pattern of correlation for a
given model. We write it as

S Qijwi w; Cyyti']
2 b
(Zij w;w; C)

where the coefficient matrix C;; is the expected correlation
between the ith and jth pixels for a model with n =1 and

(18)

41|I|]II|IIIII||II|IIII|I||III

P '[Prob(<c?)]

IlIIIIIIIIIIIIIIIIILLIIIIIIII

-4
-500 0 500 1000 2500

o® [uK")

Fi1G. 6.—The distribution of excess variances determined by DMRSMUTH
in |b| > 30° for Monte Carlo skies with spectral index n = 1, (QZys>%> =0,
13.6, 16.7, and 19.2 pK with the 1 yr noise, and {Q2ys>%* = 16.7 uK with no
noise (dashed). The vertical line is the observed value.

1500 2000
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{Qius>%® = 1. With normalization given above the expected
value of S = (Q2ys>. In order to reduce the size of the matrices
involved we have first summed the DMR maps into 2 x 2
blocks of pixels. We hae evaluated C;; using the 20,000 Monte
Carlo skies after removing the monopole dipole, and quadru-
pole from the part of the sky with |b| > 20°. Because of the
Galactic plane cut, C;; is a function not only of the separation
angle between the ith and jth pixels, but also depends on the
latitudes of the pixels as well. The Monte Carlo skies used to
construct C;; were generated using a Gaussian approximation
for the DMR beam which gives a slightly different value for C;;
than a calculation with the DMR beam given by G, As a
result, we do not assume that {QZys>%> = S'/? but instead
calibrate the Boughn-Cottingham statistic using the same
Monte Carlo technique used to calibrate o,,(10°). For the C;;
that we use, the expected vaue of S is (S) = (0.943 + 0.007
{Qius> where the uncertainty is based on 2499 Monte Carlo
skies. The actual value of the Boughn-Cottingham statistic for
the first year 53 GHz maps is S = 298 uK? (Planck).

Since there are 6144 pixels in DMR maps, there are
37,748,736 coefficients in C;;. By adjusting the coefficient array,
one can create all possible quadratic statistics using equation
(18). These include 63,,(10°), Qfwms, and every bin of the corre-
lation function C(f). The Boughn-Cottingham choice of C;;
equal to the expected correlation for the cosmic model is the
most efficient choice (gives the lowest uncertainty in {Q2ys>°-%)
but only in the limit of weak correlations. This efficiency for
weak correlations is shown in Figure 7, where the extrapo-
lation of the {(Q2ys>°> = 0 line crosses the observed value at
>12 ¢. However, the effect of cosmic variance is larger on S
than on ¢2,(10°). Using S to determine {Qius>°> gives an
accuracy of 21%, while using 04,,(10°) from DMRSMUTH
with | b| > 30° gives an accuracy of 17% from the Monte Carlo
skies with the actual noise and an assumed {(Qzys>°> = 16.66
uK. The value of (Q2ys>° in the Monte Carlo skies necessary
to give the expected value of S equal to the observed value is
17.8 uK.

The response of the Boughn-Cottingham statistic, S, to unit
rms real spherical harmonics F,,,, averaged over m, is given in
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F1G. 7—The distribution of Boughn-Cottingham statistic S = |b| > 20°
for n = 1 maps with {QZys>%° = 0, 13.6, 16.7, and 19.2 uK with the 1 yr noise,
and for {(Q2ys>°* = 16.7 pK with no noise. The monopole, dipole, and quad-
rupole found in | b| > 20° are removed from the maps before computing S. The
vertical line is the observed value.
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Fi1G. 8—The distribution of the actual Q2ys in |b| > 20° for n = 1 maps

with {Q2us>°° =0, 13.6, 16.7, and 19.2 uK with the 1 yr noise, and for
{Q2ms>°> = 16.7 uK with no noise. The vertical line is the observed value.

column VS20 of Table 1. Summing this column times GZAT?
for n = 1 also gives {S) = 0.943 x {QZ\s>, and applying equa-
tion (12) to the sum for other values of n gives I, = 3.96.

5. ACTUAL QUADRUPOLE

The final example of a quadratic statistic that we consider is
the actual QZys of the map. The statistic calculated from a
given location within the universe and with a given b, should
not be confused with the amplitude (Q3z,s>, which is the
average over the universe of QZys measured with uniform
weights and b, = 0. To calculate this statistic, we make a
weighted least-squares fit of the form

2 1
80, 9)= 3 Y GimFin0, 9) (19)
1=0 m=-1
to the part of the maps with | b| > 20° and then find
2
Qkms = z a3 a3 - (20)
m=—2

This is equivalent to calculating Qgys for the sum and differ-
ence maps and then using Q% = Q?[(4 + B)/2] — Q*[(4 — B)/
2]. With a|b| > 20° cut the value of Q is 10.4 uK (Planck) from
the 1 yr 53 GHz maps corrected for the kinematic quadrupole.
The value 11 + 3 uK for this statistic in Smoot et al. (1992) is
just the quadrupole of the kinematically corrected sum map.
This case is one of the lower values that went into the cosmic
quadrupole estimate Q = 13 + 4 uK in Bennett et al. (1992b),
but it is nonetheless a high confidence detection, since it is
exceeded by only one out of 4998 Monte Carlo skies® with
{Q&us>%* = 0. Even with this low value, the the large cosmic
variance causes Monte Carlo skies with (QZus>°"® = 16.66 uK
to have actual Qgys < 10.4 uK 13% of the time, as shown in
Figure 8.

The column labeled VQ20 in Table 1 gives the m-averaged
response of the actual quadrupole statistic to the spherical
harmonics F,,,. Note the strong response to / = 4 caused by the

® For (Q2us>®* = 0, symmetry can be used to double the effective number
of trials.
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Galactic plane cut. The small responses to odd s are due to
the use of a weighted fit for the quadrupole, since the pattern of
the weights has a slight N-S asymmetry.

6. PARAMETER ESTIMATION AND LIKELIHOOD

We have made extensive Monte Carlo calculations that give
us the probability of obtaining a given value of 62,(10°) or S
when the value of the model parameter (QZ\s>°> is specified.
We can denote the results of the Monte Carlo calculations as
P(D| M), the probability of a given data value D as a function
of the model M. This is the likelihood function. But the purpose
of the DMR experiment is to determine the value of the param-
eter (Qzus>?°. Bayes’s theorem can be used to derive P(M | D),
the probability of a model given the observed data D:

P(M ~ D) = P(M|D)P(D) = P(D| M)P(M) , Q1)

where P(M n D) is the joint probability of a given model and a
given dataset, P(D) is the probability of the data, and P(M) is
the prior distribution of the model, the source of many disputes
between Bayesian and frequentist statisticians. Here we will
just assume that P(M) is a constant, which leads to the
maximum likelihood method of parameter estimation.

Since both the ¢%,(10°) and the Boughn-Cottingham sta-
tistics have I ¢ ~ 4, we cannot estimate both {(Q2ys>°° and the
spectral index n, so we will only estimate the single parameter
{Qius>%* for a fixed n = 1. Using the quadratic interpolation
technique, we can find the number of Monte Carlo cases that
give values within a range D + 6D centered on the observed
value of the statistic as a function of (QZ,s>°->. We have selec-
ted 6D so that about 800 of the 2499 Monte Carlo runs for
each statistic fall within the range at the peak. The number of
Monte Carlo runs within these ranges centered on the
observed value is shown in Figure 9 for GET_SKY_RMS in
|b] >20°, DMRSMUTH in |b|>30°, and the Boughn-
Cottingham statistic S = | b| > 20° with monopole, dipole and
quadrupole removed. Also shown as ticks near the peak of
each likelihood curve are the values of (QZys>%> derived by
setting the mean of the Monte Carlo runs equal to the

1000||||rl|‘rﬁ||||||x|||||l

LIKELIHOOD

’lllilllllllll

» 10, 15 20 25
<Qrus>  [uK(Planck)]

F1G. 9.—The number of Monte Carlo runs within a range centered on the
observed value of the statistic for GET_SKY_RMS with | b| > 20° (solid line),
DMRSMUTH with |b| > 30° (short dashed line), and S with |b| > 20° (long
dashed line). Mean-derived estimates of {Q2ys>°° are indicated by vertical
lines near the peaks of the likelihood curves.
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observed values. These values are close to the maximum likeli-
hood values in all three cases, and are all within the N!/?
uncertainty of the peak. Since these mean-derived estimates of
{QZus>®* are more easily extended to other values of n using
equation (11) and the values in Table 1, we are reporting the
mean-derived values for (Q2ys>°5 below.

7. SUMMARY AND CONCLUSIONS

We have shown that using the actual DMR beam and the
actual computer programs for smoothing the DMR maps gives
a ratio of excess sky variance to {(QZys> that is from 10% to
20% lower than a simple smoothing with a 10° Gaussian
applied to the whole sky. The effect of the Galactic plane cut
on the quadrupole and octupole affects all statistical analyses
of the DMR data, including analyses of the correlation func-
tions. Any statistic calculated from the DMR maps should be
compared to the results from Monte Carlo sky simulations.
Smoot et al. (1992) and Wright et al. (1992) both used libraries
of expected correlation functions for different values of n that
were evaluated using Monte Carlo simulations that included
the | b| cut, but used the Gaussian approximation to the DMR
beam.

When these precautions are applied to the o, (10°) statistic
we get the following results: with a 20° cut, DMRSMUTH
gives (Q2us>®° =183 uK and GET_SKY_RMS gives
{Qius>°> = 16.5 uK when applied to the 53 GHz maps. With
a 30° cut, DMRSMUTH gives {QZys>%° =177 uK and
GET_SKY_RMS gives {(Q2us>®® = 17.0 uK. The difference
between DMRSMUTH and GET_SKY_RMS for |b| > 30° is
caused by the interaction between the pattern of the DMR
weights and the pattern of the actual variation on the sky. The
variance of the DMRSMUTH maps computed using weights
gives a (QZus >’ that is 4%-5% smaller than that calculated
without weights. While using weights reduces the effect of radi-
ometer noise, it increases the effect of cosmic variance. For the

|b] > 20° cut, DMRSMUTH actually uses data within 9°5 of
the Galactic plane and as a result is picking up some Galactic
signal. Thus neither GET_SKY_RMS nor DMRSMUTH can
be considered the “best” way to compute o,(10°), and we
have averaged together the values for (Qaus>°> given above
without including DMRSMUTH at |b| > 20°. This gives
(Q2us>%® = 17.1 + 2.9 pK for n = 1 where the error is purely
statistical. While Galactic emission should have only a small
effect on 0,,,(10°) and S, based on Figure 4 of Bennett et al.
(1992b), we caution that no allowance has been made for the
systematic error limits discussed in Kogut et al. (1992). The
actual quadrupole in the DMR maps is considerably smaller
than this value of {QZus>°>. As a result, the Boughn-
Cottingham statistic S which is based solely on [ > 2 gives a
slightly higher value {(QZys>%° = 17.8 + 3.8 uK, where the
error is again purely statistical. Thus both the 6,,,(10°) and
Boughn-Cottingham statistic of the DMR maps are consistent
with the (Q2ys>°° =17 +5 uK reported by Smoot et al.
(1992) and Wright et al. (1992), but the statistical error on
{Qfms>®* is only 3 uK. Since both a,,,(10°) and S have [ ¢ ~ 4,
a less n-dependent statement of the results of this paper is that
power-law power spectra that match the amplitude of the
structure seen in the DMR maps have an rms hexadecupole of
(AT?%y°5 = (12.8 + 2.3) uK, where we have now included (in
quadrature) the estimated systematic error in the hexadecupole
from Kogut et al. (1992).
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result of many thousands of hours of detailed inspection of
the data and checking of the software. In particular, we
thank A. Banday, P. Jackson, E. Kaita, P. Keegstra, V. Kumar,
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