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ABSTRACT

We use the two-point correlation function of the extrema points (peaks and valleys) in the COBE Differen-
tial Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in
the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to
n =1 toy models whose random-phase spherical harmonic components a,, are drawn from either Gaussian,
%% or log-normal parent populations. The likelihood of the 53 GHz (A +B)/2 data is greatest for the exact
Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data,
limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger
test for this class of non-Gaussian models than topological statistics such as the genus.

Subject headings: cosmic microwave background — methods: statistical

1. INTRODUCTION

The angular distribution of the cosmic microwave back-
ground (CMB) probes the distribution of mass and energy in
the early universe and provides a means to test competing
models of structure formation. One such test is whether or not
the distribution of CMB anisotropies follows Gaussian sta-
tistics. In most inflationary models, the large-scale CMB
anisotropy results from quantum fluctuations and follows their
Gaussian statistics. Competing models (topological defects,
axions, late phase transitions) generally involve higher order
correlations and produce non-Gaussian distributions.
Attempts to differentiate Gaussian from non-Gaussian dis-
tributions on large angular scales are complicated by the ten-
dency of any distribution to approach Gaussian when
averaged over a sufficiently large area (the central limit
theorem) and by our inability to measure more than one
sample (our observable universe) of the theoretical parent dis-
tribution (“ cosmic variance ”).

Several authors (Hinshaw et al. 1994; Smoot et al. 1994; Luo
1994) have tested the first-year anisotropy maps from the
COBE DMR experiment and find excellent statistical agree-
ment with the hypothesis that the observed temperature fluc-
tuations reflect random-phase Gaussian initial perturbations.
However, since no competing models are examined, the com-
patibility with non-Gaussian models is not tested. In this Letter,
we employ the two-point correlation function of extrema
points to compare the two-year DMR maps to a set of broadly
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applicable toy models employing both Gaussian and non-
Gaussian statistics. Simulations employing inputs with known
distributions indicate that this statistic can successfully dis-
tinguish Gaussian from non-Gaussian toy models with ~10%
error rate even at 10° angular resolution, and provide impetus
for more computer-intensive studies of specific non-Gaussian
cosmological models.

2. ANALYSIS

We test for Gaussian statistics using the set of extrema
points in the temperature field T(6, ¢), defined as those points
for which VT = 0. For a pixelized map, this reduces to the
collection of pixels hotter or colder than all of their nearest
neighbors. Specifying pixels hotter than their neighbors pro-
duces a set of “hot spots” or “peaks,” while specifying colder
pixels produces “cold spots” or “valleys.” An additional data
selection may be performed, requiring | T | to be greater than
some threshold v, usually expressed in terms of the standard
deviation o of the temperature field.

The 2 point correlation function of the extrema pixels pro-
vides a compact description of the data,

Zi, P W W T; T:

i wiw;
where w is some weighting factor and the sum runs over all
pixel pairs {i, j} separated by angle 6. We consider three appli-
cations of the extrema correlation function: peak-peak
(autocorrelation of just the peaks or just the valleys), peak-
valley (cross-correlation of the peak pixels with the valley
pixels), and combined extrema (autocorrelation of all extrema
points without regard for their second derivative). Bond &
Efstathiou (1987) provide analytic approximations for these
functions for random Gaussian fields but do not explicitly
include the effects of instrument noise superposed on the CMB.
Since the correlation properties of the nonuniform noise in the
DMR maps are different from the underlying CMB tem-
perature field, we use Monte Carlo techniques instead to derive
the mean extrema correlation function and covariance as a
function of the threshold v.

We analyze the extrema correlation functions of the 2 year
COBE DMR maps (Bennett et al. 1994) and compare the sensi-
tive 53 GHz (A + B)/2 sum maps and (A — B)/2 difference maps

Ceul0) =

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...439L..29K

L30 KOGUT ET AL.

to Monte Carlo simulations of scale-invariant (n = 1) CMB
anisotropy superposed with instrument noise. We generate
each CMB realization using a spherical harmonic decomposi-
tion T(0, @) = Y i Gim Yim(0; ¢) in which the harmonic coeffi-
cients a, are random variables with zero mean and
I-dependent variance,

5 o 4n T + (n — 1)/2]T[(9 — n)/2]

<a1m> = (Qrms—PS) ? r

[+ (5 — m/2ITTG + m)/2]
(Bond & Efstathiou 1987), where Q.. _ps is the power-
spectrum amplitude normalization expressed at the quadru-
pole (Smoot et al. 1992). The coefficients a,, are drawn from
parent populations with either Gaussian, log-normal, or y&
(N =1, 5, or 15 degrees of freedom) distributions, normalized
to the mean and variances above. A non-Gaussian amplitude
distribution for the a,, while retaining random phases provides
a simple modification to the standard Gaussian model of CMB
anisotropy. The log-normal distribution is the most strongly
non-Gaussian, while the y3 models provide a smooth tran-
sition from strongly non-Gaussian (N = 1) to nearly Gaussian
(N = 15). The models tested are not an exhaustive set of non-
Gaussian models but are a computationally simple test of the
power of various statistics on large angular scales. Although
the non-Gaussian amplitude distributions tested here are skew-
positive, the resulting sky maps are the convolution of the g,
with the spherical harmonics Y;,, and are thus characterized by
a positive kurtosis in the distribution of temperatures T (e.g.,
higher “wings” than a Gaussian distribution). We test the
sensitivity of our results to the transformation a,,, > —a,,, and
find no difference using either definitton.

The coefficients a,, define toy models to which specific
models of structure formation may be compared (e.g., Wein-
berg & Cole 1992). On large angular scales, non-Gaussian
models such as cosmic strings or textures approximate the
scale-invariant power spectrum of the standard Gaussian infla-
tionary models. On smaller angular scales strongly non-
Gaussian features appear, either as phase correlations (line
defects in string models) or as an overabundance of high-
amplitude hot and cold spots (texture models). Our toy models
do not introduce phase correlations, but the increased prob-
ability to produce high-amplitude fluctuations in the positive-
kurtosis y? or log-normal models qualitatively reproduces this
feature of textures or other models with rare high-amplitude
peaks. The toy models cannot be compared in detail to specific
physically motivated non-Gaussian models, but share enough
of their characteristics to motivate further investigation of
these CPU-intensive models if the toy models demonstrate

_reasonable discrimination versus the standard Gaussian

model.

We generate 1000 n = 1 full-sky realizations for each CMB
model. To each CMB realization we add a realization of
instrument noise defined by the level and pattern of noise in the
,DMR 2 year 53A and 53B channels (Bennett et al. 1994), then
combine the channels to form (A+B)/2 sum maps and
(A — B)/2 difference maps. We do not include Galactic emission
or systematic uncertainties since these are small compared to
the noise (Bennett et al. 1992, 1994; Kogut et al. 1992). We
smooth the maps with a 7° Gaussian full width at half-
maximum as a compromise between suppressing noise and
removing power at small scales, resulting in an effective
smoothing on the sky of 10°. We reject pixels with Galactic
latitude |b| < 20°, remove fitted monopole and dipole tem-
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peratures from the surviving pixels, and determine the stan-
dard deviation o. A nearest-neighbor algorithm then forms the
collection of extrema pixels at thresholds v = [0, 1, 2]o; these
pixels at each threshold are then used to generate the peak-
peak, peak-valley, and combined extrema correlation functions
using unit weighting and 2?6 bins in the separation angle 6.
Since, by definition, two peaks cannot be adjacent, we ignore
the bin at zero separation and the first nonzero bin in all
subsequent analysis. Analysis shows that the results are domi-
nated by the first few remaining bins; consequently, we speed
processing by truncating the correlation function at separation
0 = 60° for a total of 22 angular bins.

The correlation function C., |, evaluated at thresholds v =
[0’ 1’ 2]‘7 defines a vector § = [Cext|v=0’ Cext|v=1’ Cext|v=2]’
consisting of k = 66 components- (three sets of 22 angular
bins). The properties of each toy model may be specified by the
mean value of this vector in each bin i, {S;> = (1/N) }_ S;, and
the covariance matrix M;; = (1/N) Y, (S; — <SDXS; — <S;>)
between bins i and j derived from the N realizations of the
vector S. We compare the DMR data to the simulations via a
Gaussian approximation to the likelihood

L(Qrms—rps> Y) = (2 ~iy2 &% [—(1/2%°]
(Qrms PS ) ( n) det (M)

where x? =Y (D; — (SOIM~){D; —<S), and D is a
similar vector of correlation functions for the DMR maps. The
likelihood . is a function of two parameters: the continuous
variable Q,.._ps representing the normalization and the dis-
crete variable Y representing the five a,,, toy models. Since the
covariance matrix M depends strongly on these parameters, a
simple y? minimization approach fails, leading us to use the
likelihood instead as a statistical tool in the Monte Carlo simu-
lations described below. We evaluate the likelihood % in the
2-dimensional parameter space for values of Q.. _ps SPanning
the range [0, 30] uK and search for the maximum in the
resulting distribution.

3. RESULTS AND DISCUSSIONS

Figure 1 shows the likelihood of the 2 year 53 GHz (A + B)/2
maps for both the Gaussian and the non-Gaussian models
derived from the autocorrelation function of all extrema pixels,
normalized to unity for the most likely model. The likelihood
function is greatest for the exact Gaussian model, with relative
likelihoods for the non-Gaussian models ~0.05. Restricting
the analysis to the n = 1 Gaussian model yields a maximum
likelihood normalization for the 53 GHz (A +B)/2 maps of
O.ms—ps = 18.1 + 1.9 pK, in agreement with other estimates of
Q. ms—ps using the 2 year COBE data (Wright et al. 1994;
Gorski et al. 1994; Bennett et al. 1994; Banday et al. 1994). The
width of the distribution in Q. _ps is similar for all models.
The likelihood function of the (A — B)/2 difference maps peaks
at Q,...-ps = 0 with no significant preference between models.
Similar results occur for the peak-peak and peak-valley corre-
lation functions. »

The small likelihoods in Figure 1 for the non-Gaussian toy
models given the DMR data would seem to rule out these
models at high statistical confidence. However, formal identi-
fication of confidence intervals relies heavily on assumptions
of the statistical distributions in the analysis (e.g., that the
residuals D — {S) are multivariate normal) which are not
always realized in practice. Furthermore, since the parameter
Y represents a collection of discrete models insteady of a con-
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Fi6. 1.—Likelihood function of the 2 year DMR 53 GHz (A + B)/2 extrema correlation function for Gaussian and non-Gaussian toy models

tinuous variable, we cannot integrate over Y to derive con-
fidence intervals in the usual way. Although the degree of
freedom N in the yZ distribution could in principle serve as an
integration variable, we prefer a more general approach which
will remain viable for discrete physically motivated models
such as topological defects for which no such variable exists.
We resolve these problems, assign relative probabilities, and
test for statistical bias using a Monte Carlo approach.

We generate 1000 realizations of one model (e.g., Gaussian)
with Q,,.._ps = 18 uK and use the same machinery (likelihood
analysis of the extrema correlation function) to generate the
likelihood £(Q, s ps, Y) Of each realization against all five toy
models, replacing the. DMR correlation vector D with the
vector S from each realization in turn. We select the likelihood
maximum in Q, ... ps for each model Y (effectively ignoring any
information on Q,,,_ps) and study the resulting set of likeli-
hood maxima to see how often the largest likelihood occurs at
each model Y. This is equivalent to generating Figure 1 for
each realization, evaluating only the relative heights of each
likelihood curve, and counting how often each model is-selec-
ted as “most likely.” We then generate another 1000 realiza-
tions with a different input model and repeat for all five toy
models.

Table 1 shows the percentage of simulations for which each
model was selected as “most likely ” as a function of the model
used to generate the realizations. When the input is known to
be Gaussian (col. [2]), 61% of the simulations correctly identify
the exact Gaussian as the “best” model, with the remainder
incorrectly allocated among the non-Gaussian models (a type I

fact a realization of one of the non-Gaussian toy models (a type
II error)? From the first row of Table 1 (Gaussian model
received highest likelihood) we see that the probability of
obtaining this result is 3 times larger for a Gaussian CMB than
for any of the non-Gaussian toy models. There is a 64% rela-
tive probability that the CMB follows Gaussian statistics and
only 36% probability that it is better described by one of the
non-Gaussian toy models.

A more powerful test uses additional information from the
likelihood distribution. We have examined the subset of simu-
lations for which the best-fitted model was not, in fact, the
correct input, and found that the likelihoods in these cases did
not strongly select against the rejected models. The DMR like-
lihood does not show this pattern: the second-best likelihood
(for the y25 model) is only 0.08. Table 2 shows the percentage of
simulations for which each model was selected as “most
likely” while the next-best likelihood was smaller than 0.08.
We recover the same overall pattern as Table 1: the most
probable outcome is to recover the input model correctly, but
the fraction of both type I errors (columns) and type II errors
(rows) is reduced. The relative probability to obtain the DMR
result is 5-10 times greater for the Gaussian CMB model than
the non-Gaussian toy models: there is less than 10%-20%
chance that any of these models describes the DMR data.

TABLE 1
PERCENTAGE OF SIMULATIONS FROM SINGLE TEST

INPUT MODEL®

error). When the input is instead one of the non-Gaussian toy S(T);‘:‘S'i GausSAN 27 ; r  LOG.NORMAL

models (cols. [3]-[6]), that model is correctly identified in a N5 xs 4

similar fraction of the realizations (note that the y7 and log- Gaussian........ 61 21 20 23 24

normal distributions are nearly degenerate). There is no evi- Zzs --------------- 16 56 21 21 23

dence for any statistical bias favoring one particular model: the Ky oowwnenceeeees 11 14 15 18

fact that the DMR data “ prefer ” the Gaussian model is not an Xiooeeeeeeennennns 3 6 7 28 15
log-normal...... 7 6 8 13 20

artifact of the method.
Given that the DMR likelihood is greatest for the exact
Gaussian model, how confident are we that the CMB is not in

® Percentage of 1000 simulations for which each model was selected as
“most likely ” as a function of the model used to generate the realizations.
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TABLE 2
PERCENTAGE OF SIMULATIONS FROM DOUBLE TEST

INPUT MODEL?

FiTTED

MopEL GAUSSIAN x4 x2 0 LOG-NORMAL
Gaussian......... 20 2 3 4
P SOTURR 1 16 1 3 3
e S 1 1 10 1 2
P ST 2 2 315 8
log-normal...... 4 4 5 7 13

# Percentage of 1000 simulations for which each model was selected as
“most likely ” with next-best likelihood less than 0.08.

The topological quantity known as the genus has also been
proposed as a test for non-Gaussian statistics in the CMB
(Gott et al. 1990). Smoot et al. (1994) show that the genus of the
first-year DMR maps is consistent with random-phase Gauss-
ian models. We have performed a likelihood analysis of the
genus of the 2 year DMR maps compared to the same set of
non-Gaussian toy models used for the extrema correlation
analysis above. Although the genus likelihood is also greatest
for the exact Gaussian model, the ability to reject the non-
Gaussian models is weaker, with maximum-likelihood
Max (%) =~ 0.3 for the log-normal and y? models using the
genus compared to Max (&) ~ 0.05 using the extrema corre-
lation function. Coles & Barrow (1987) discuss the genus of

somewhat different x> models and reach a similar conclusion
that the genus does not strongly differentiate between random-
phase Gaussian and non-Gaussian models. The genus of the 2
year DMR maps will be discussed in greater detail in a future
paper.

Both the genus and the extrema correlation function show
the 2 year DMR data to be consistent with the hypothesis of
random-phase Gaussian statistics and inconsistent with
random-phase toy models with non-Gaussian distributions of
the spherical harmonic coefficients a,,,. There is less than 10%
probability that the non-Gaussian models tested describe the
large angular scale anisotropy of the CMB. Although the sta-
tistical power of these tests is not overwhelming, they do
demonstrate that large-beam experiments can probe the sta-
tistical distribution of CMB anisotropy. Physically motivated
non-Gaussian models (e.g., topological defects) have strong
phase correlations as well, which would be expected to increase
the statistical power of these tests. There is thus an incentive to
pursue further tests of specific models using the COBE DMR
data.

We gratefully acknowledge the dedicated efforts of those
responsible for the COBE DMR data. C. Lawrence, C. Line-
weaver, and L. Tenorio provided helpful discussion of sta-
tistical techniques. COBE is supported by the Office of Space
Sciences of NASA Headquarters. '
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