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ABSTRACT

We present the first all-sky sample of galaxy clusters detected blindly by thePlancksatellite through the Sunyaev-Zeldovich (SZ) effect from its
six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to
29. Its high reliability (purity above 95%) is further ensured by an extensive validation process based onPlanck internal quality assessments and
by external cross-identification and follow-up observations. Planckprovides the first measured SZ signal for about 80% of the 169 previously-
known ESZ clusters.Planckfurthermore releases 30 new cluster candidates, amongst which 20 meet the ESZ signal-to-noise selection criterion.
At the submission date, twelve of the 20 ESZ candidates were confirmed as new clusters, with eleven confirmed using XMM-Newton snapshot
observations, most of them with disturbed morphologies andlow luminosities. The ESZ clusters are mostly at moderate redshifts (86% withz
below 0.3) and span more than a decade in mass, up to the rarestand most massive clusters with masses above 1× 1015 M⊙.

Key words. Galaxy Clusters – Large-Scale Structure – Planck

1. Introduction

Galaxy clusters provide valuable information on cosmology,
from the nature of dark energy to the physics that drives galaxy
and structure formation. The main baryonic component in these
dark matter dominated objects is a hot, ionised intra-cluster
medium (ICM). The ICM can be studied both in the X-ray
and through the Sunyaev-Zeldovich effect (SZ) (Sunyaev &
Zeldovich 1972; Sunyaev & Zeldovich 1980), a fairly new and

⋆ Corresponding author: M. Douspis, marian.douspis@ias.u-psud.fr

highly promising technique that has made tremendous progress
in recent years since its first observations (Birkinshaw & Gull
1978); see alsoRephaeli(1995); Birkinshaw(1999); Carlstrom
et al.(2002).

The SZ effect is undoubtedly the best known and most stud-
ied secondary contribution, due to cosmic structure, that is im-
printed on the cosmic microwave background after decoupling
[for a review of secondary anisotropies seeAghanim et al.
(2008)]. It is caused by the inverse Compton interaction between
the cosmic microwave background (CMB) photons and the free
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Fig. 1. Planck y-map of Coma on a∼ 3◦ × 3◦ patch with the
ROSAT-PSPCiso-luminosity contours overlaid.

electrons of the hot ICM. It can be broadly subdivided into the
thermal SZ (TSZ) effect, where the photons are scattered by the
random motion of thermal electrons, and the kinetic SZ (KSZ)
effect caused by the bulk motion of the electrons. In the former
case, the scattered CMB photons have a unique spectral depen-
dence, whereas the final spectrum remains Planckian in the case
of the KSZ effect.

The SZ effect offers a number of advantages for cluster stud-
ies. First, the Comptony parameter, which measures the integral
of the gas pressure along the line of sight and sets the amplitude
of the SZ signal, does not suffer from cosmological surface-
brightness dimming. This implies that the SZ effect is an effi-
cient method for finding high-redshift clusters. Second, the total
SZ signalY, integrated over the cluster’s angular extent, directly
measures the total thermal energy of the gas and as such is ex-
pected to correlate closely (i.e., with a tight scatter in the scaling
relation) with total cluster mass. This fact is borne out both by
numerical simulations (Borgani 2006; da Silva et al. 2001; Motl
et al. 2005; Pfrommer et al. 2007) and indirectly from X-ray ob-
servations (Nagai et al. 2007; Arnaud et al. 2007; Vikhlinin et al.
2009) usingYX , the product of the gas mass and mean tempera-
ture giving an X-ray analogue of the integrated SZ Compton pa-
rameter first introduced byKravtsov et al.(2006). This contrasts
with the X-ray luminosity which, at a given mass, is very sensi-
tive to the cluster’s thermodynamical state, for instance due to a
recent merger event or in the presence of a strong cooling core.
Hence SZ surveys are expected to provide clean cluster samples
over a wide range of redshifts, in the sense of being close to
an unbiased mass-limited selection. These are key properties for
statistical studies with clusters, either to constrain cosmological
models (e.g., from the evolution of the mass function) or to probe
the physics of structure formation (e.g., from cluster scaling and
structural properties).

For these reasons, alongside the efforts developed to mea-
sure CMB anisotropies many pioneering instruments were used
or developed to observe the SZ effect and use it as new obser-
vational probe of cluster physics, large-scale structure,and the
cosmological model. The first observations of the SZ effect,tar-
geted at specific X-ray selected clusters, were performed using

interferometric or single-dish experiments mostly observing in
the Rayleigh–Jeans part of the spectrum: the Ryle Telescope
at 15 GHz (Jones et al. 1993), the OVRO 5 meter telescope
at 32 GHz (Birkinshaw & Hughes 1994), the SuZIE array at
140 GHz (Holzapfel et al. 1997), BOLOCAM at 143 and 265
GHz (Glenn et al. 1998), the Diabolo array on IRAM 30 me-
ter telescope at 140 GHz (Pointecouteau et al. 1999), MITO
at 143, 214, 272, and 353 GHz (De Petris et al. 1999), the
Nobeyama 45 metre telescope at 21 GHZ, 43 GHz and 150 GHz
(Komatsu et al. 1999), the BIMA array at 30 GHz (Dawson et al.
2001), ACBAR at 150 and 220 GHz (Gómez et al. 2003), CBI
working between 25 and 36 GHz (Udomprasert et al. 2004),
VSA at 30 GHz (Lancaster et al. 2005), the Atacama Pathfinder
Experiment (APEX) SZ Camera at 150 GHz (Dobbs et al. 2006),
the SZ Array at 30 GHz (Muchovej et al. 2007), AMI at 15 GHz
(Zwart et al. 2008), and AMIBA at 90GHz (Wu et al. 2008); see
Birkinshaw & Lancaster(2005) for a review of observational
techniques. Measurements of the SZ effect were further made
or attempted in the Wien part of the spectrum with PRONAOS
(Lamarre et al. 1998), SCUBA (Zemcov et al. 2007), and more
recently with the Herschel Space Observatory (Zemcov et al.
2010).

These experiments have not only allowed us to accumulate
SZ measurements for about a hundred clusters, but have also laid
the groundwork for SZ-based studies of clusters and of cosmol-
ogy. In combination with other observations, especially inX-
rays, they were used to measure cosmological parameters such
as the Hubble constant, and to probe the distance-duality re-
lation between the angular-diameter and luminosity distances,
bulk flows, and the cluster gas mass fraction [e.g.,Silk & White
(1978); Kobayashi et al.(1996); Grego et al.(2001); Reese et al.
(2002); Uzan et al.(2004); Ameglio et al.(2006); Bonamente
et al. (2006); Kashlinsky et al.(2008)]. The SZ effect has also
been used to characterise the clusters themselves, as it canpo-
tentially measure their radial peculiar velocities (Benson et al.
2003). The relativistic corrections to the SZ effect (e.g.,Itoh
et al.(1998)) can be used to measure the gas temperature directly
for massive clusters (Pointecouteau et al. 1998). The spectral sig-
nature of the SZ effect can in principle even probe the electron
gas distribution and constrain any non-thermal electron popu-
lation in the intracluster medium (Colafrancesco et al. 2003;
Shimon & Rephaeli 2004). The SZ effect can also be used as
a tracer of the WHIM diffuse gas (Génova-Santos et al. 2005;
Battistelli et al. 2006). Moreover multi-frequency SZ measure-
ments might provide a novel way of constraining the CMB tem-
perature and its evolution with redshift (Battistelli et al. 2002;
Horellou et al. 2005; Luzzi et al. 2009).

Deep surveys covering hundreds of square degrees and capa-
ble of detecting many tens to hundreds of clusters, performed by
the South Pole Telescope (SPT) (Carlstrom et al. 2009) and the
Atacama Cosmology Telescope (ACT) (Marriage et al. 2010),
are accumulating, and already delivering, data. One of their
goals is to use SZ cluster counts and the SZ angular correlation
function as cosmological tools (Haiman et al. 2001; Weller et al.
2002; Levine et al. 2002; Majumdar & Mohr 2004; Douspis et al.
2006). Such surveys are particularly powerful for detecting dis-
tant clusters, as was recently proven by results fromVanderlinde
et al.(2010).
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In this context ESA’sPlanck1 mission, launched on 14 May
2009, carries a scientific payload consisting of an array of 74
detectors sensitive to a range of frequencies between roughly 25
and 1000 GHz, which scan the sky simultaneously and continu-
ously with an angular resolution varying between about 30 ar-
cmin (FWHM) at the lowest frequencies and about four arcmin
at the highest. The array is arranged into two instruments. The
detectors of the Low Frequency Instrument (LFI) are pseudo-
correlation radiometers covering three bands centred at 30, 44,
and 70 GHz. The detectors of the High Frequency Instrument
(Lamarre et al. 2010; Planck HFI Core Team 2011a, HFI;) are
bolometers covering six bands centred at 100, 143, 217, 353,
545, and 857 GHz with bolometers cooled to 0.1 K. The de-
sign ofPlanckallows it to image the whole sky approximately
twice per year, with an unprecedented combination of sensi-
tivity, angular resolution, and frequency coverage. ThePlanck
satellite, its payload, and its performance as predicted atthe
time of launch are described in 13 articles included in a special
issue (Volume 520) of Astronomy & Astrophysics. The main
objective of Planck is to measure the spatial anisotropies of
the temperature of the Cosmic Microwave Background (CMB)
with an accuracy set by fundamental astrophysical limits. Its
level of performance will enablePlanck to extract essentially
all the information in the CMB temperature anisotropies.Planck
will also measure to high accuracy the polarisation of the CMB
anisotropies, which not only encodes a wealth of cosmological
information but also provides a unique probe of the thermal his-
tory of the Universe during the time when the first stars and
galaxies formed. In addition, thePlancksky surveys will pro-
duce a wealth of information on the dust and gas in our own
galaxy and on the properties of extragalactic sources.

Planckwas specifically designed from the beginning to mea-
sure the SZ effect (Aghanim et al. 1997) and provide us with an
all-sky SZ cluster catalogue. The first galaxy cluster searched
for in the HFI data, Abell 2163 (Fig.5 and 6), was indeed
found from 100 GHz to 353 GHz shortly after the First Light
Survey (FLS) was performed and observations in routine mode
by Planckstarted. Three other known clusters falling in the FLS
region were seen across the positive and negative parts of the
SZ spectrum. The scanning strategy soon allowed us to map ex-
tended clusters such as Coma on wide patches of the sky (Fig.1).
SZ detection techniques were then applied to the data and the
first blind detections were performed.

ThePlanckall-sky SZ cluster catalogue, with clusters out to
redshiftsz ∼ 1, that will be delivered to the community at the
end of the mission will be the first all-sky cluster survey since
the ROSAT All-Sky Survey (RASS), which was at much lower
depth (the median redshift of the NORAS/REFLEX cluster cata-
logue isz≃ 0.1). Thanks to its all-sky nature,Planckwill detect
the rarest clusters, i.e., the most massive clusters in the expo-
nential tail of the mass function which are the best clustersfor
cosmological studies. ThePlanckEarly SZ (ESZ) sample is de-
livered alongside the Early Release Compact Source Catalogue
(ERCSC) (Planck Collaboration 2011a), the nine-band source
catalogue, and the Early Cold Core (ECC) catalogue (Planck
Collaboration 2011f) at http://www.rssd.esa.int/Planck(Planck
Collaboration 2011g). The ESZ is a high-reliability sample of

1 Planck(http://www.rssd.esa.int/Planck) is a project of the European
Space Agency (ESA) with instruments provided by two scientific con-
sortia funded by ESA member states (in particular the lead countries
France and Italy), with contributions from NASA (USA) and telescope
reflectors provided by a collaboration between ESA and a scientific con-
sortium led and funded by Denmark.

189 SZ clusters or candidates detected over the whole sky from
the first ten months of thePlancksurvey of the sky.

The present article details the process by whichPlanckESZ
sample was constructed and validated. ThePlanckdata and the
specific SZ extraction methods used to detect the SZ candidates
are presented in Sections2 and3. Planck’s measurements pro-
vide an estimate of the integrated Compton parameter,Y, of de-
tected SZ cluster “candidates”. A subsequent validation process
is needed to identify which among the candidates are previously
known clusters, and an additional follow-up programme is re-
quired to scientifically exploitPlanckcluster data. This includes
cluster confirmation (catalogue validation) and the measurement
of relevant physical parameters. These different steps of the ESZ
construction and validation are presented in Section4 and the
subsequent results are given in Section5. Finally, Sections6,
7, and8 present the general properties of the ESZ cluster sam-
ple. Planck early results on clusters of galaxies are presented
here and in a set of accompanying articles (Planck Collaboration
2011b,c,d,e).

Throughout the article, and in all the above citedPlanckSZ
early result papers, the adopted cosmological model is aΛCDM
cosmology with Hubble constant,H0 = 70 km s−1 Mpc−1, mat-
ter density parameterΩm = 0.3 and dark energy density param-
eterΩΛ = 0.7. The quantityE(z) is the ratio of the Hubble
constant at redshiftz to its present value,H0 , i.e., E2(z) =
Ωm(1+ z)3

+ ΩΛ.

2. Planck data description

The ESZ sample was constructed out of thePlanckchannel maps
of the HFI instrument, as described in detail inPlanck HFI Core
Team(2011b). These maps correspond to the observations of
the temperature in the first ten months of the survey byPlanck,
which give complete sky coverage. Raw data were first pro-
cessed to produce cleaned time-lines (time-ordered information,
TOI) and associated flags correcting for different systematic ef-
fects. This includes a low-pass filter, glitch treatment, conversion
to units of absorbed power, and a decorrelation of thermal stage
fluctuations. For cluster detection, and more generally forsource
detection, one data flag of special importance is associatedwith
Solar System Objects (SSO). These objects were identified in
TOI data using the publicly-available Horizon ephemeris, and
the SSO flag was created to ensure that they are not projected
onto the sky, in order to avoid possible false detections, ringing,
etc.

Focal-plane reconstruction and beam-shape estimates were
obtained using observations of Mars. Beams are described byan
elliptical Gaussian parameterisation leading to FWHMθS given
in Planck HFI Core Team(2011b). The attitude of the satellite
as a function of time is provided by the two star trackers in-
stalled on thePlanckspacecraft. The pointing for each bolome-
ter was computed by combining the attitude with the locationof
the bolometer in the focal plane reconstructed from Mars obser-
vations.

From the cleaned TOI and the pointing, channel maps have
been made by co-adding bolometers at a given frequency. The
path from TOI to maps in the HFI data processing is schemati-
cally divided into three steps: ring-making, destriping, and map-
making. The first step averages circles within a pointing period
to make rings with higher signal-to-noise (S/N) ratio, taking
advantage of the redundancy of observations provided by the
Planckscanning strategy. The low amplitude 1/ f component is
accounted for in the second step using a destriping technique.
Finally, cleaned maps are produced using a simple co-addition
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of the Healpix-based rings2. SSO flag channel maps, used in the
internal validation of the ESZ sample, were also made following
the same procedure.

The noise in the channel maps is essentially white with
a standard deviation of 1.6, 0.9, 1.4, 5.0,70, 1180µK degree3

from low to high frequencies (Planck HFI Core Team 2011b).
Photometric calibration is performed for the lower frequency
channels at the ring level using the CMB dipole (from WMAP
(Hinshaw et al. 2009)), and at the map level using FIRAS data
(Fixsen et al. 1994) for the higher frequency channels at 545 and
857 GHz. The absolute gain calibration of HFIPlanckmaps is
known to better than 2% (Planck HFI Core Team 2011b).

3. Detection and Cluster extraction

In order to generate a cluster candidate list, a suitable extraction
algorithm must be run on the maps. SZ clusters can be consid-
ered as compact sources with respect to thePlanckbeam, but
they are definitely not point sources. Their extension thus merits
a special adapted processing. For this reason, several extraction
methods were developed within thePlanck collaboration, and
those were tested and compared using thePlanck Sky Model
Simulation (PSM4). The details of the comparison of the cluster
extraction algorithms, called the “SZ challenge”, can be found
in Melin et al. (in prep.).

Methods fall into two classes: “direct” methods use indi-
vidual channel maps to extract the clusters, while “indirect”
methods use skyy-maps obtained via component separation al-
gorithms. The methods used in this article are direct methods,
with the reference method chosen on the basis of the SZ chal-
lenge. The direct detection algorithms used to construct and val-
idate the ESZ sample incorporate prior assumptions on the clus-
ter signal, specifically its spectral and spatial [i.e., theshape of
the Intra-Cluster Medium (ICM) pressure profile] characteristics
(see Sect.3.1). This enhances the cluster contrast over a set of
observations containing contaminating signals.

Most of the methods developed prior to the launch were ap-
plied to thePlanckdata, but only direct methods were favoured
for implementation in the pipeline infrastructure. The following
three were used to construct and validate the ESZ sample:

– A matched multi-frequency filter (MMF) algorithm, referred
to henceforth as MMF3, was the reference method used for
the blind detection of SZ candidates, and the construction of
the ESZ list.

– Two other methods (Sections3.3.2and3.3.1) were used to
confirm the blind detections of the ESZ candidates.

In addition, a slightly different version of MMF3 was run
as part of ESZ validation, in order to re-extract the ComptonY
parameter of the SZ clusters incorporating fixed cluster sizes and
positions taken from X-ray observations (see Sect.6.2).

3.1. Baseline cluster model

The ICM pressure profile has historically been described by an
isothermalβ-model (Cavaliere & Fusco-Femiano 1978; Grego
et al. 2001; Reese et al. 2002, e.g.,). However, recent X-ray ob-
servations have shown that aβ-model is a poor description of

2 http://healpix.jpl.nasa.gov/ (Górski et al. 2005)
3 In the following and unless otherwise stated,µK refers to equiva-

lent CMB temperature fluctuations inµK.
4 ‘Planck Sky Model’, http://www.apc.univ-

paris7.fr/APCCS/Recherche/Adamis/PSM/ psky-en.php

the gas distribution in clusters, leading several authors to pro-
pose more realistic analytical functions based on a Generalised
Navarro-Frenk-and-White (GNFW) profile (Nagai et al. 2007;
Arnaud et al. 2010).

The baseline pressure profile used in the present work is
the standard “universal” pressure profile derived byArnaud
et al. (2010). It is constructed by combining the observed X-
ray pressure profile withinR500, from 31 galaxy clusters of the
REXCESS sample (Böhringer et al. 2007), with data from state-
of-the-art numerical simulations (Borgani et al. 2004; Nagai
et al. 2007; Piffaretti & Valdarnini 2008) out to 5R500. In the
following, R500 is the cluster size defined as the radius where the
mean enclosed density is 500 times the critical density. It relates
to the characteristic cluster scaleRs through the NFW concen-
tration parameterc500 (Rs = R500/c500).

The pressure profile model used in the present article
is equivalent to the standard self-similar case described in
Appendix B ofArnaud et al.(2010).5 It is equivalent to a shape
function characterised by two free parameters, a central value
and a characteristic scaleθs.

The SZ effect from the hot ICM is due to the first-order
correction for energy transfer in Thomson scattering. There is
a spectral distortion, energy being transferred from photons in
the Rayleigh–Jeans tail of the cosmic blackbody radiation to the
Wien tail. In the non-relativistic limit the frequency dependence
of the distortion is universal (the same for all clusters), charac-
terised by a distinct frequency,ν ∼ 220 GHz, where the TSZ
effect vanishes. Below this frequency there is a decrement of the
CMB intensity, giving an apparentdecreasein the sky bright-
ness, and above lies an enhancement.

The magnitude of the SZ effect, known as the Compton pa-
rametery, depends only on the cluster’s characteristics, elec-
tronic temperatureTe and densityne, as

y =
kσT

mec2

∫ l

Te(l)ne(l) dl

wherek is the Boltzmann constant,σT the Thomson cross sec-
tion, mec2 the electron rest mass andl is the distance along the
line of sight. The total SZ signal is characterised by the inte-
grated Compton parameter denotedY =

∫

ydΩ, whereΩ is solid
angle. It can be written asD2

AY = (σT/mec2)
∫

PdV, whereDA
is the angular-diameter distance to the system andP = nekTe the
electron pressure. In the following, the integral performed over
the sphere of radiusR500 (5R500) is denotedY500 (Y5R500).Thus,
as defined here,Y500 andY5R500 have units of solid angle, e.g.,
arcmin2.

3.2. Reference extraction method (Matched Multi-Filter,
MMF3)

The ESZ sample is the result of a blind multi-frequency search
in the all-skyPlanck-HFI maps, i.e., no prior positional infor-
mation on detected known clusters was used as input to the de-
tection algorithm. The ESZ sample is produced by running the
MMF3 algorithm, which is an all-sky extension of the matched
multi-frequency filter algorithm described inMelin et al.(2006),
over the six HFI frequency maps. The spectral distortion of the
CMB due to the ICM can in principle be detected down to the
lowest frequencies at whichPlanckoperates; however, the beam
at the lowest frequencies is large compared to typical cluster

5 More details on the pressure profile can be found inPlanck
Collaboration(2011c)
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sizes. Since clusters at moderate redshifts typically spanangular
scales of∼ 5arcmin, the large beam ofPlanckat the LFI bands
results in beam dilution of the SZ signal. The inclusion of the
lowestPlanckfrequencies using the current algorithm therefore
results in a lower S/N for the detected sources than if only the
HFI bands were used. This reduces the efficiency of SZ cluster
detection, which can potentially be improved in the future with
refinements to the algorithm. As a consequence, for the genera-
tion of the ESZ list, only thePlanckall-sky maps at frequencies
of 100 GHz and above are considered.

The MMF algorithm, studied extensively byHerranz et al.
(2002) andMelin et al. (2006), enhances the contrast, and thus
S/N, of objects of known shape and known spectral emission
profile over a set of observations containing contaminatingsig-
nals. In its application for SZ, the method makes use of the uni-
versal frequency dependence of the thermal SZ effect. The filter
optimises the detectability using a linear combination of maps
(which requires an estimate of the statistics of the contamina-
tion) and uses spatial filtering to suppress both foregrounds and
noise (making use of the prior knowledge of the cluster profile).
The filter optimises cluster detection but it is not immune tocon-
tamination by false, non-SZ, detections which calls for an exten-
sive validation procedure described in Section4.

MMF3 first divides the all-sky maps into a set of 504 over-
lapping square patches of area 10× 10 square degrees. Holes in
the maps due to unsampled or badly sampled pixels are identi-
fied to construct an effective detection mask and are then filled in
with the median value of the adjacent pixels. The matched multi-
frequency filter then combines optimally the six frequencies of
each patch assuming the SZ frequency spectrum and using the
reference pressure profile presented in Section3.1.

Auto- and cross-power spectra used by MMF3 are directly
estimated from the data and are adapted to the local instrumen-
tal noise and astrophysical contamination. For each patch,the
position and the scale radius (chosen to be 5R500) of the cluster
profile, i.e., the cluster size 5θ500, are varied to maximise the S/N
of each detection. The algorithm hence assigns to each detected
source a position, an estimated cluster size, 5θ500, and an inte-
grated Compton parameter,Y5R500. In the present article and un-
less otherwise stated themeasuredintegrated Compton parame-
ter, notedY5R500, is thus computed by integrating the GNFW pro-
file within a sphere of 5R500

6 encompassing most of the SZ sig-
nal. The detected sources extracted from the individual patches,
with their assigned sizes and integrated Compton parameters, are
finally merged into an all-sky cluster list. In practice the MMF3
algorithm is run in an iterative way; after a first detection of the
SZ candidates, consecutive runs centred on the positions ofthe
candidates refine the estimated S/N and candidate properties. At
this stage, the uncertainty onY5R500 is provided and takes into
account the uncertainty in the cluster size estimate. The MMF3
algorithm can also be performed with fixed cluster size and posi-
tion to estimate the SZ signal. This version of the algorithmwas
used to measure the integrated Compton parameters of known
X-ray clusters in the ESZ sample, as explained in Section6.2.

In order to address contamination by point sources, MMF3
uses a built-in source detection algorithm to reject point sources
with S/N above ten which are then masked. This step avoids
most of the false SZ detections associated with point sources.
However, some residual contamination by non-SZ sources cap-
tured by the MMF3 algorithm may still be present and requires
additional validation of the detection candidates (see Section 4).

6 In the spherical assumption with this profile,Y500 the integrated
Compton parameter withinR500 relates toY5R500 by Y5R500 = 1.81×Y500.

3.3. Other extraction methods

The two other “direct” SZ detection methods used to confirm
the blind detections of the ESZ candidates by MMF3 are dis-
cussed below. These methods previously compared rather well
to each other within the SZ challenge match in terms of the de-
tection properties (especially for high S/N sources). Their esti-
mated sizes and SZ signals agree on average as well, though they
differ on a case by case basis.

3.3.1. The Matched Multi-Filter Method, MMF1

The MMF1 algorithm is a completely independent implementa-
tion of the multi-frequency matched filter integrated within the
Planck-HFI pipeline and infrastructure. A more detailed descrip-
tion of MMF1 is given inMelin et al.(2011). The full-skyPlanck
frequency maps are divided into 640 flat patches, each 14.66 de-
grees on a side (corresponding to 512 by 512 pixels), with over-
lapping regions of six degrees. The performance of the MMF
algorithm is extremely sensitive to the quality of the estimated
auto- and cross-power spectra of the background component in
each frequency map. The size of the patches thus needs to be
large enough to ensure a representative assessment of the back-
ground. The large overlap between patches was chosen so thatall
detections in a two-degree border around the edge of the patch
may be discarded.

The detection of the SZ-candidates is performed on all the
patches, and the resultant sub-catalogues are merged together to
produce a single SZ-candidate catalogue. Similarly to MMF3,
the candidate size is estimated by filtering the patches overthe
range of potential scales, from point-source sized objectsand
larger, and finding the scale which maximises the S/N of the
detection of the candidate. In the version used on thePlanck
data, when merging sub-catalogues produced from the analysis
of individual patches, it is also the S/N of the detection which is
used when deciding which detection of the candidate is kept.

3.3.2. PowellSnakes (PwS) for SZ

PowellSnakes (PwS) is quite different from the MMF methods.
It is a fast Bayesian multi-frequency detection algorithm de-
signed to identify and characterise compact objects buriedin a
diffuse background. The detection process is grounded in a sta-
tistical model comparison test where two competing hypothe-
ses are compared: the detection hypothesis and the null hypothe-
sis. The statistical foundations of PwS are described inCarvalho
et al.(2009).

Similarly to the MMF algorithms, a template parameterised
SZ pressure profile is assumed known and representative of the
majority of the cluster population observable with the resolution
and noise characteristics of the instrumental setup. According to
our data model, the pixel intensities result from the contribution
of three independent components: the SZ signal, the astronom-
ical background component, and the instrumental pixel noise.
The last is assumed to be a realisation of a homogeneous sta-
tionary Gaussian random white noise process. The background
astronomical components and the pixel noise are assumed un-
correlated and can each be modelled locally by a homogeneous
Gaussian process.

The algorithm starts by minimising the model’s likelihood
ratio with respect to the model’s parameters by using a Powell
minimiser iteratively one source at a time. We assume that the
sources are well separated and the fields not too crowded. The
parameter estimation and the acceptance/rejection threshold is
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defined using Bayesian approach with priors adjusted on the
PlanckSky Model SZ Catalogue.

PwS performs on flat 512× 512 pixel patches of 14.66 de-
grees on a side. When applying a Galactic cut of|b| > 14 de-
grees, PwS splits the sphere into 2324 patches. However, only
detections lying inside the inner 256×256 pixels are considered.
So, on average PwS detects each cluster more than three times
(usually four times), increasing the reliability of the detection.
The selection of the candidate detection that goes into the final
catalogue uses the Bayesian mode of PwS, based on the highest
ratio of model posteriors.

4. Validation of the ESZ sample

The SZ validation process, Fig.2, is an integrated HFI-LFI
effort within Planck Working Group 5 (WG57) “Clusters and
Secondary anisotropies”. It has been established in order to val-
idate the full SZ candidate lists obtained from the extraction
methods developed by thePlanckcollaboration. It relies mainly
on a three-stage process detailed in the following subsections:

– Internal validation steps based onPlanckdata:
– search for and rejection of associations with SSOs and

artefacts;
– rejection of sources with rising spectral energy distribu-

tion in the high HFI frequency bands;
– cross-check with otherPlancksource catalogues to reject

SZ candidates identified with cold cores (CC) and other
Galactic sources; and

– redundant detections of the same candidates by methods
other than the reference one.

– Candidate identificationsteps based on ancillary data:
– identification of SZ candidates with known clusters from

existing X-ray, optical/near infrared (NIR), and SZ cata-
logues and lists; and

– search in NED and SIMBAD databases.
– Follow-up programmesfor verification and confirmation of

SZ candidates.

4.1. Construction of ESZ sample and internal validation

The construction of the ESZ list of SZ candidates starts with
the blind detection of candidates using the implementationof
the MMF3 algorithm at the US Planck Data Center applied to
Planck-HFI channel maps at Galactic latitudes|b| > 14 deg. A
total of about 1000 blind SZ candidates are detected with S/N
≥ 4. As discussed above, the MMF3 algorithm uses prior infor-
mation on the SZ spectrum and on the cluster shape. However,
especially due to the beam-sizes of the order of a few arcmin-
utes, the resulting list of SZ candidates is not immune from
false detection due mainly to dust emission at high frequencies
from the interstellar medium (ISM) or infrared sources, andvery
moderately to the CMB fluctuations at low frequencies (see il-
lustrations of channel maps in upper panels of Fig.5). In the
following, we do not explicitly check for association with ex-
tragalactic point sources emitting atPlanck-HFI frequencies,
which is essentially dealt with internally by the MMF3 algorithm
(Sect.3.2). Some residual contamination of the SZ ComptonY
parameter by point sources may, however, still be present (see
Section6.4for a specific discussion).

The internal validation process starts by removing spurious
detections from the output list of blind SZ candidates, which is

7 http://www.ita.uni-heidelberg.de/collaborations/planck/
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Fig. 2. Flowchart of the SZ validation process applied to the
Planckcluster sample.

achieved in two steps. We first reject the candidates showingris-
ing spectral energy distributions in the highestPlanck-HFI fre-
quency bands. They represent around 14% of the initial blind
SZ candidates. Second, the remaining blind SZ candidate sam-
ple is further cleaned by rejecting all objects associated with ei-
ther Galactic sources, or CC detected using the CoCoCodet algo-
rithm (Montier et al. 2010; Planck Collaboration 2011f) within
a 7 arcmin radius of SZ candidates. This step further reducesthe
sample of remaining SZ candidates by about 17%.

After this two-step process, the initial blind SZ candidate
sample has been reduced to around 770 blind SZ candidates
with S/N ≥ 4. However at this S/N level many candidates will
not correspond to actual clusters. Theoretical predictions based
on the PSM simulations indicate that the purity (ratio of true to
all detections) is expected to be of the order of 70% at S/N =
4 (Fig. 15). The simulations do not account fully for the com-
plexity of the true sky nor for the inhomogeneity of the noise
across the sky. The actual purity is thus likely to be worse than
the prediction. In order to ensure a high level of purity in the
ESZ sample and based on lessons learnt from the XMM-Newton
observations of low S/N candidates (seePlanck Collaboration
(2011b)), an early decision was made to cut at a higher S/N level
of S/N ≥ 6 for this firstPlanckdata release. This more stringent
condition retains 201 SZ cluster candidates. Taking advantage
of the outcome of the follow-up programme for cluster confir-
mation by XMM-Newton, we further retain only the SZ candi-
dates detected blindly by the MMF3 algorithmandat least one
other method, be it MMF1 or PowellSnakes. This results in 190
SZ cluster candidates; these constitute the baseline ESZ sam-
ple. A detailed inspection of the SZ maps and spectra of the 11
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discarded SZ candidates was performed (see Section5.2.2) and
confirmed that these sources were false detections.

A final internal check consisted of searching for associations
of the obtained 190 SZ candidates with possible artefacts such
as low-frequency noise stripes, ringing from neighbouringbright
sources, hot pixels, non-observed pixels or poorly sampledpix-
els in the vicinity of SSO-flagged regions. None of the 190 ESZ
candidates was associated with such artefacts.

4.2. Candidate identification with ancillary data

The second stage of the SZ validation process consisted of cross-
matching the obtained list of 190 blind SZ candidates with ex-
ternal cluster catalogues in X-rays, optical and SZ domains. This
allowed us to identify the SZ candidates associated with previ-
ously known clusters and consequently isolate thePlanckcandi-
date new clusters.

4.2.1. With X-ray cluster catalogues

For the association ofPlanckSZ candidates from the blind ex-
traction with known X-ray clusters, we have used the Meta-
Catalogue of X-ray detected Clusters of galaxies (MCXC,
Piffaretti et al. 2010). This homogenised compilation of X-
ray detected clusters of galaxies comprises approximately1800
clusters from publicly available ROSAT All Sky Survey-based
(NORAS, REFLEX, BCS, SGP, NEP, MACS, and CIZA) and
serendipitous (160SD, 400SD, SHARC, WARPS, EMSS, etc)
cluster catalogues.

For each X-ray cluster in the MCXC several properties are
available, amongst which are the X-ray centroid coordinates,
redshift, identifiers, andL500.8 The luminosities are adopted as
proxies to estimate the total massM500 using theL–M relation
from REXCESS (Pratt et al. 2009), and radiusR500, and to pre-
dict the integrated ComptonYLX

5R500, or alternativelyYLX

500, as de-
tailed inPlanck Collaboration(2011c) as well as otherPlanck-
related quantities.

Because the MCXC compilation includes only clusters with
available luminosity (redshift) information, we supplement it
with about 150 clusters where this information is missing. This
implies that for the latter only centroid positions are avail-
able. The resulting meta-catalogue, for simplicity referred to as
MCXC in the reminder of the article, is extensively used dur-
ing the external validation process. For a givenPlanckcandidate
cluster we identify the closest MCXC cluster. The reliability of
the association is checked based on the distance, as compared to
the cluster size, and on the measuredY5R500 (or S/N) values, as
compared to the expected valuesYLX

5R500 (or S/N) for the MCXC
clusters.

4.2.2. With optical cluster catalogues

The baseline for the identification of blind SZ candidates from
the ESZ with clusters known in the optical is the cross-match
with the Abell cluster catalogue (Abell 1958, 5250 clusters of
which 1026 have a redshift) and the Zwicky cluster catalogue
(Zwicky et al. 1961, 9134 objects). The association criterion here
was a positional match with a search radius for both catalogues
set to five arcminutes.

8 The X-ray luminosities as measured within an aperture of radius
R500

Furthermore, the ESZ sample was cross-checked against the
MaxBCG (Koester et al. 2007) andWen et al.(2009) catalogues
with a search radius of 5 arcmin.

4.2.3. With known SZ clusters

The identification of SZ candidates is also performed at millime-
tre wavelengths by cross-matching the SZ candidate list with
a compilation of SZ observed galaxy clusters from the litera-
ture undertaken by Douspis et al. (in prep.). This compilation is
based on SZ observations conducted with the numerous experi-
ments developed during the last 30 years (Ryle, OVRO, BIMA,
MITO, Nobeyama, SZA, APEX-SZ, AMI, Diabolo, Suzie, Ryle,
AMIBA, ACBAR, etc). It also includes the new clusters re-
cently discovered through their SZ signature by ACT and SPT.
In total the compilation comprises 111 SZ clusters including
28 newly discovered by ACT and SPT (Menanteau et al. 2010;
Vanderlinde et al. 2010). The association of thePlanckSZ can-
didates was based on positional matching with a search radius of
five arcminutes.

4.2.4. Queries in SIMBAD and NED databases

The information provided from querying databases is mainly
redundant with cross-checks with cluster catalogues in X-ray
or optical. However, running both cross-matches is important
to avoid missing a few associations. It is also important to re-
trieve the information on redshifts for those identified clusters
not included in the MCXC. We therefore performed a system-
atic query in SIMBAD. The adopted search radius was set to five
arcminutes. For NED, no systematic query was implemented.
Cluster candidates within the same search radius were rather
checked against a list of objects retrieved from NED flagged as
“Clusters of galaxies”. Finally the candidates were also checked
against the X-ray cluster database (Sadat et al. 2004, BAX:).

4.3. Follow-up programme for validation and confirmation

In parallel to the effort of SZ candidate cross-identification, a
coherent follow-up programme targeted towards the verifica-
tion/validation of the cluster candidates in the SZ catalogue was
put into place in the form of an internal roadmap. The main goals
of this follow-up programme are to confirmPlanckcandidates as
new clusters, and as a consequence to better understand boththe
SZ selection criteria in thePlancksurvey and the reliability of
selected sources.

Considering the complementarity of X-ray, optical and
IR/SZ, observational follow-ups have been coordinated to op-
timise the validation and the understanding of thePlanck se-
lection. In practice, this took the form of a confirmation pro-
gramme relying on observations with XMM-Newton9 making
use of Director Discretionary Time (DDT) as detailed inPlanck
Collaboration(2011b). This is complemented by observations
in the optical using the European Northern Observatory facilities
(ENO), the European Southern Observatory 2.2m-telescope,and
two pilot programmes, one with the WISE experiment (Wright
et al. 2010) for the search of overdensities in the IR data, and one
with the Arcminute MicroKelvin Imager10 (AMI, Zwart et al.

9 XMM-Newtonis an ESA science mission with instruments and con-
tributions directly funded by ESA Member States and the USA (NASA)

10 AMI is a pair of interferometer arrays located near Cambridge, UK,
operating in six bands between 13.5 and 18 GHz, with sensitivity to
angular scales 30 arcsec – 10 arcmin.
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(2008)) for the confirmation ofPlanckcandidates with SZ ob-
servations.

An ensemble of SZ candidates spanning a range of S/N be-
tween four and eleven was selected from earlier versions of the
HFI channel maps and sent to the above-mentioned facilities.
The targets were selected from a list of SZ candidates after the
external validation stage (i.e., identification of known clusters).
They went through visual inspection of their maps and spectra
produced by all the available methods described in Section5.2.2.
Furthermore, in order to avoid duplicating existing observations
of candidates with the same or similar facilities, the cluster can-
didates were further cross-matched with logs of X-ray, optical,
and NIR observatories.

The search in X-ray observatories (ROSAT, Suzaku, XMM-
Newton, and Chandra) was performed using the HEASARC
tool.11 For XMM-Newton and Chandra both master catalogues
and accepted GO (Guest Observer) targets were used in the
search. For Suzaku, only the master catalogue was used. In
the case of optical and NIR observatories, the search was per-
formed in the public logs of several optical/infrared observato-
ries. In some cases, this search was completed using VO (Virtual
Observatory) tools12. The checked resources were: ING Archive,
UKIRT Archive, ESO Archive, HST Archive (at ESO), CFHT
Archive, AAT Archive, NOAO Science Archive, Multimission
Archive at STScI (MAST), Gemini Science Archive, and
SMOKA (Subaru Mitaka Okayama Kiso Archive). In addition, a
search in the footprint of the covered area for known surveyswas
performed. The searched areas considered were those of SDSS,
UKIDSS, and HST (ACS-WFC) as they are described in the VO
footprint service13 (Budavári et al. 2007), as well as those of SPT
and ACT experiments.

The details and results of the confirmation follow-up with
XMM-Newton are given inPlanck Collaboration(2011b). A to-
tal of 25 targets were observed with short snapshot exposures
(i.e., 10 ks nominal EPN) out of which 21 were confirmed as
clusters or systems of multiple extended X-ray sources (i.e., dou-
ble or triple). Complying withPlanckpolicies and following the
agreement between thePlanckand XMM-NewtonESA project
scientist, all the data are made public with the publicationof the
Planckearly results and thePlanckERCSC. Of the 21 confirmed
PlanckSZ sources, 11 are found in the ESZ sample and are dis-
cussed in Section5.2.1. The remaining clusters with S/N< 6 are
discussed inPlanck Collaboration(2011b). One candidate clus-
ter in the ESZ sample was confirmed by AMI and WISE. None
of the targets sent for observation in the optical with the ENO
telescopes met the ESZ selection criteria.

5. Results of the validation

In the following we will detail the outcome of the external val-
idation of the 190 SZ candidate clusters retained after the inter-
nal validation. We find that they are distributed between known
clusters (169 in total, Fig.3 blue) and 21 candidate new clusters.
Among those 21, twelve have been confirmed (Fig.3 yellow)
and these are discussed in Section5.2.1. Nine remain as candi-
date new clusters requiring confirmation (Fig.3 red); they are
described in Section5.2.2. The further checks performed on the
candidate new clusters resulted in the rejection of one of the nine
candidates.

11 http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl
12 VO command line tools http://iraf-nvo.noao.edu/vo-cli/
13 http://www.voservices.net/footprint

The final released ESZ list thus comprises 189 clusters or
candidate new clusters. The content of the released data14 is pre-
sented in AppendixA.3. Table1 summarises the different steps
of ESZ sample construction and validation detailed in the previ-
ous sections. Figures5 and6 show illustrations of the raw and
“cleaned” channel maps (from 100 to 545 GHz) as well as corre-
spondingy-maps, for a few clusters, with S/N ranging from the
highest ones to more typical ones.

5.1. ESZ candidates identified with known clusters

The external validation with ancillary data identified 169 clus-
ters in total out of the 190 candidates detected blindly. They are
known X-ray or optical clusters andPlanckdata provide the first
measure of the SZ signal for the majority of them, opening a new
observational window on those already known objects.

Most of the identified SZ candidates, 162 in all, were associ-
ated with known clusters from the MCXC compilation and 158
have known redshifts (provided in the compilation), X-ray lumi-
nosities, X-ray estimated sizes (θ500), etc. Moreover, as expected,
a very large fraction of them (127 clusters) are at the same time
identified in the optical. They are mostly Abell clusters from the
ROSAT X-ray cluster catalogues.

The remaining seven identifiedPlanck clusters were ob-
tained from search in SIMBAD (one cluster, RXJ0748.7+5941,
observed by ROSAT but not part of the NORAS catalogue
(Appenzeller et al. 1998) and without published redshift), from
logs of observatories (one cluster, H1821+643 atz = 0.299
(Schneider et al. 1992)) and from optical only, i.e., without an
X-ray counterpart, identification with Abell or Zwicky clusters
(five clusters). These are ZwCl2120.1+2256, AC114Northern,
A3716S, ZwCl1856.8+6616, and ZwCl0934.8+5216 clusters.
The last two have no published redshifts. For all these clusters,
redshifts when they are available are retrieved from the SIMBAD
and NED databases.

The cross-match with known SZ clusters further indicates
that one cluster, AS0520, is common toPlanck, ACT and SPT.
Additionally, five15 clusters from ACT are in common with the
Planck ESZ sample, and twelve massive clusters observed by
SPT (Plagge et al. 2010) are also observed byPlanckand quoted
in the ESZ. Finally by comparing with the SZ compilation from
Douspis et al.(2011), we find that, in total, 41 clusters from the
ESZ sample have already been observed in SZ by previous ex-
periments. For these clustersPlanckprovides us with a homoge-
neous set of SZ measures. Moreover, out of the full ESZ sample
about 80% have been observed in SZ for the first time and have
a homogeneous measurement of their Compton parameter from
Planck.

Out of the known clusters in the ESZ sample, a few are
given in the Early Release Compact Source Catalogue (ERCSC)
(Planck Collaboration 2011g) as they were detected by the
source extraction techniques used to construct the ERCSC. They
are 1ES 0657-55.8 (commonly known as the bullet cluster and
detected blindly with an S/N of 19.7), A2218, ACO S0520,
CIZA J1938.3+5409, A0119, RXC J1720.1+2637, A3376, and
MACS J2135.2-0102. It is worth noting that the quoted fluxes
in the ERCSC are obtained using aperture photometry on the

14 http://www.rssd.esa.int/Planck
15 One of the candidate new clusters confirmed by XMM-Newtonap-

peared in publication as one of the ACT SZ optically-confirmed clusters
(Menanteau et al. 2010) to be observed byChandra, after we scheduled
it for observation with XMM-Newton: PLCKESZ G262.7-40.9/ACT-
CL J0438-5419. We retain it as new candidate in the following.
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Fig. 3. Distribution of ESZ clusters and candidate clusters on the sky (Galactic Aitoff projection). Left panel: In blue are ESZ
clusters identified with known clusters, in green the ESZ confirmed candidates, and in red the ESZ candidate new clusters yet to be
confirmed. Right panel: In red diamonds the ESZ sample, in black crosses the compilation of SZ observations prior to 2010,in dark
blue triangles ACT clusters fromMenanteau et al.(2010), and in purple squares SPT clusters fromVanderlinde et al.(2010). The
blue area represents the masked area of|b| < 14 deg.

Table 1.Summary of the ESZ sample construction and validation steps.

Selection SZ Candidates Rejected
S/N≥ 6 and good quality flag on SZ spectrum 201
Detected by one method only 11
Bad quality flag from visual inspection 1

ESZ sample 189
Known clusters 169

X-ray only 30
Optical only 5
NEDSimbad only 1
X-ray + Optical 128
X-ray + SZ 1
SZ + Optical 1
X-ray + Optical +SZ 3

New Planckclusters 20
XMM confirmed 11
AMI confirmed 1
Candidate new clusters 8

channel maps without band merging. They cannot be compared
easily with the obtained integrated Compton parameters in the
present article. Moreover, two of the above-listed clusters, RXC
J1720.1+2637 and MACS J2135.2-0102, suffer from astrophys-
ical contamination that may affect the computedY.

5.2. New Planck clusters in the ESZ sample

The ESZ sample contains 20 new clusters or candidates clus-
ters with S/N ranging from 11.5 to 6. As mentioned above, a
follow-up programme set up to help understand the selectionof
Planckclusters allowed us to confirm 12 clusters. Eleven were
confirmed with XMM-Newton snapshot observations, while one
cluster was confirmed with AMI observations and corresponds
to an overdensity of galaxies in the WISE data.

5.2.1. Confirmed ESZ cluster candidates

The XMM-Newton observations for confirmation of SZ candi-
dates were based on earlier versions of the channel maps and an
earlier version of the data processing than that used for theESZ
construction. The 25 targets sent for observation were selected in
two different campaigns, a pilot programme (exploring S/N from
six down to four) and a higher S/N programme (above S/N of 5).
Among the 21Planckcluster candidates confirmed by snapshot
observation with XMM-Newton, 11 clusters have aPlanckS/N

above six (in the present map version) and thus meet the ESZ
selection criteria. Two of them were found to be double clusters
on the sky. All eleven are published in the ESZ release. Together
with the remaining ten clusters confirmed by XMM-Newton, all
are described inPlanck Collaboration(2011b). In the following
we just summarise the general properties of the new confirmed
clusters in the ESZ.

The eleven new clusters in the ESZ confirmed by XMM-
Newton have S/N ranging from 11.5 to 6.3. They were found to
lie below the REFLEX flux limit of 3× 10−12 erg s−1, except for
two confirmed clusters above the limit. These clusters happen to
have associations with BSC sources and to be situated above the
MACS limit; however their redshifts,z = 0.27 andz = 0.09 are
below the considered redshifts for MACS [see the detailed dis-
cussion inPlanck Collaboration(2011b)]. The redshifts of the
new confirmed clusters were estimated directly from X-ray ob-
servations of iron emission lines, and range betweenz= 0.2 and
0.44. Only two out of the eleven confirmed new clusters have op-
tical redshift estimates. For one new cluster (PLCKESZ G285.0-
23.7), the agreement between the X-ray estimated and photo-
metric redshifts is quite good. The second cluster, PLCKESZ
G262.7-40.9, was found to be an ACT cluster, published after
the scheduling of XMM-Newton observation, for which there is
a discrepancy between the X-ray-estimated redshift (z = 0.39)
and the photometric redshift (z = 0.54) from Menanteau et al.
(2010). The range in temperature spanned by the new confirmed
clusters in the ESZ is from about 4 to 12 keV, and the derived
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Fig. 4. y-map of PLCKESZ G139.59+24.19 as observed by
Planck (colour image) and AMI (contours) at a common reso-
lution of 13 arcmin. The contours are from two to nine in S/N
ratio.

masses range from about 4 to 15× 1014M⊙. Three new clusters
in the ESZ sample have masses of 10×1014M⊙ or above, includ-
ing the most massive cluster detected byPlanckwith a mass of
about 15×1014M⊙. The confirmation of thePlancknew clusters
by XMM-Newton provides us with positions and, most of all, a
better estimate of the cluster size that will be important for the
re-extraction ofY values (see Section6.2).

One additional candidate cluster, PLCKESZ G139.59+24.19
detected at S/N = 7.2, was confirmed by a pilot project for
confirmation with the AMI interferometer (see Fig.4 showing
the Planck y map with the AMI contours, obtained after the
subtraction of bright sources with the large array observations,
overlaid). ThePlanck cluster was detected at 9σ by AMI in
a long-time exposure of approximately 30 hours. Preliminary
results from AMI give an integrated Compton parameter of
Y5R500 = (17.0± 1.7)× 10−4 arcmin2, extracted fixing the clus-
ter size to the estimated size fromPlanck. The Planck value,
Y5R500 = (32± 13)× 10−4, is obtained from the blind detection
of the cluster. The error bar takes into account the uncertainty
in the cluster size estimate by the MMF3 algorithm. A detailed
comparison is planned. This same cluster was also confirmed at
a S/N level of five by WISE.

5.2.2. ESZ candidate new clusters

A closer inspection of the ESZ candidate new clusters was per-
formed in order to ensure the reliability of the retained candidate
new clusters. The same close inspection was also performed,a
posteriori, in order to confirm the rejection of the 11 candidates
excluded in the final steps of the ESZ construction because they
were observed solely by MMF3 (Sect.4.1). This closer inspec-
tion of the candidates was based on both internal (usingPlanck
alone) and external data.

For the in-depth inspection of thePlanck data, we used
cleaned channel maps, reconstructedy-maps and SZ spectra.
All these products are quite sensitive to the procedure usedfor
cleaning the channel maps, i.e., to the component separation

method. We therefore simultaneously employed different clean-
ing approaches developed by thePlanck collaboration, briefly
described below, in order to ensure convergence and redundancy
in the derived conclusions. One of the methods is based on the
construction of SZy-maps centred on the ESZ candidate posi-
tions using the Modified Internal Linear Combination Algorithm
(MILCA, Hurier et al.(2010)) applied independently on each
SZ-centred patch. The contribution from other sources of sky
emission such as thermal dust and radio and infrared sourcesis
thus more accurately reduced. Other approaches based on local
component separation and aperture photometry were also devel-
oped in order to check they-maps and SZ spectra of the candi-
dates. Patches centred on the SZ candidates are produced from
thePlanckchannel maps and the IRIS map (Miville-Deschênes
& Lagache 2005). Local component separation is performed by
decorrelating from the low-frequency channels an extrapolation
of the dust emission computed with the 857 GHz and IRIS maps.
The “dust-free” 217 GHz map is then removed from all channels
and visual inspection can then be performed on these cleaned
patches. From this set of maps we then obtain SZ reconstructed
y-maps and an SZ spectrum by applying aperture photometry to
each patch. The internal inspection of thePlanckdata (y-maps,
frequency maps and spectra) therefore provides us with a setof
quality flags that were used for the selection of targets for the
follow-up programmes and that are used for a qualitative assess-
ment of the reliability of the candidates.

Converging negative quality assessments result in the rejec-
tion of the SZ candidates. However in most cases, it is usefulto
combine and complement thePlanck-internal quality flags with
external information. In practice this consists in searching for as-
sociations with FSC (Faint Source Catalogue) and BSC (Bright
Source Catalogue) RASS sources, searching in, and visualising,
the RASS maps at the candidate cluster positions, and finally
performing visual checks of the DSS (Digital Sky Survey) im-
ages in the candidate field (within a five arcminute radius from
the Planckposition). Based the lessons learnt from the XMM-
Newton confirmation programme, the association of candidates
with FSC or BSC-RASS sources (in the five arcminute radius
field) was considered as an indication of the reliability of the
candidate. The presence of an excess in the count-rate RASS im-
ages in the candidate field was also used as a reliability flag.The
DSS images were used simply as an “empirical” assessment of
the presence of an overdense region. It is worth noting that the
external information provided in particular by the RASS data
never supersede thePlanck-internal quality flags. As a matter of
fact, two of the confirmed new clusters had neither FSC nor BSC
associations. Conversely, associations with FSC and BSC-RASS
sources were found for SZ candidates that turned out to be false
detections (Planck Collaboration 2011b).

Using the internal quality flags and the additional external
checks, out of the nine candidate new clusters retained by the
ESZ construction, seven were judged reliable. Two candidate
new clusters had rather poor quality flags and no external associ-
ations. One of them was found to be associated with dust cloud
emission. Note that this source was not flagged by the cross-
match with the CC and Galactic sources, nor identified with a
rising spectral distribution at high frequencies during the inter-
nal validation and ESZ construction. This candidate was rejected
from the final ESZ sample, reducing the total number of clusters
and candidate clusters from 190 to 189. The second cluster can-
didate with low reliability (PLCKESZ G189.84-37.24),was kept
in the ESZ list as it was not associated clearly with any non-SZ
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Fig. 5.Observations of a few clusters from the ESZ sample. For each cluster, the upper panels show the raw (1 square degree) maps
at 100, 143, 217, 353, and 545GHz. The lower panels show the corresponding cleaned maps (see Sect.5.2.2). These clusters span
S/N from 29 to 6 from the upper left to the lower right.

source. Table2 summarises the external information associated
with the candidate new clusters in the ESZ sample16.

16 During the review process 6 of the 8Planckcluster candidates were
confirmed by SPT (Story et al. 2011; Williamson et al. 2011) and AMI

(Hurley-Walker et al. 2011) experiments independently of thePlanck
collaboration.
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Fig. 6. Illustrations of reconstructedy-maps (1.5◦ × 1.5◦, smoothed to 13 arcmin) for clusters spanning S/N from 29 to 6from the
upper left to the lower right.

6. Error budget on the cluster parameters

6.1. Position

The ESZ sample contains a list of 189 clusters or candidate clus-
ters distributed over the whole sky with positions obtainedfrom
blind detection with the MMF3 algorithm. Based on the simula-
tion used for the SZ challenge comparison, we find that MMF3

recovers cluster positions to∼ 2 arcmins on average. However,
there is a large scatter in the positional accuracy, as seen in Fig.7.

For the 158 ESZ candidates identified as X-ray clusters with
known X-ray size, the coordinates of the X-ray counterpart are
given by the MCXC. The X-ray position is also given for the
Planckcluster candidates confirmed by XMM-Newton as single
objects. The comparison of the SZ candidate positions derived
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Table 2.For thePlanckcandidate new clusters not yet confirmed at the time of submission, external information from RASS.

Name RASS Distance to S/N of S/N of RASS Note
association source (arcmin) RASS source inPlanckaperture

PLCKESZ G115.71+17.52 BSC 0.17 8.7 8.5 Possible contamination by dust emission
PLCKESZ G121.11+57.01 FSC 1.72 2.9 4.1 Possible association with WHL

J125933.4+600409 fromWen et al. (2009),
z= 0.33

PLCKESZ G189.84-37.24 None - - 1.3 Low reliability, high level of contamination by
Galactic emission

PLCKESZ G225.92-19.99 FSC 1.11 2.5 6.7 With XMM-Newton and HST pointed observa-
tions

PLCKESZ G255.62-46.16 FSC 0.9 2.7 3.8 With ESO and Suzaku pointed observations
PLCKESZ G264.41+19.48 BSC 1.22 4.6 5.7
PLCKESZ G283.16-22.93 FSC 0.54 3.6 4.2
PLCKESZ G304.84-41.42 BSC 0.55 3.6 5.1 With ESO pointed observations
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Fig. 7. Upper left panel: Positional accuracy from MMF3
based on simulations for the SZ challenge. Upper right panel:
Distribution of the distance between the SZ blind position and
the X-ray position (DSZ−X) for 167 known, or confirmed with
XMM-Newton, X-ray clusters. Lower panel: Separation of the
SZ blind and X-ray positionsDSZ−X as a function ofDSZ−X nor-
malised to the cluster sizeθ500,X .

from the blind detection with the X-ray positions of the iden-
tified or confirmed clusters for a total of 167 clusters is shown
in Fig. 7, left panel. The positional offset betweenPlanckblind
and X-ray positions,DSZ−X, is of the order of 2 arcmin on av-
erage, consistent with the estimates obtained from the SZ chal-
lenge simulation. Very few clusters (8 in total over 167) have an
offset DSZ−X > 4 arcmin, and stand out as clear outliers in the
distribution. It is worth noting that such a positional offset com-
bines both the uncertainty in the position reconstruction from
MMF3 and the possible physical offset between the centroidsof
X-ray and SZ signals (e.g., in merging clusters). The eight clus-
ters withDSZ−X > 4 arcmin are all nearby merging clusters or
members of larger structures such as A3532 in the Shapley su-
percluster, or contaminated by radio source emission. The clus-
ter A1066 (z = 0.07), which has the largest positional offset
(DSZ−X = 10 arcmin), is in the Leo Sextans supercluster (Einasto
et al. 2001). In addition, it may suffer from point source contam-

ination. The cluster Abell 1367 atz = 0.02 with DSZ−X = 7.8
arcmin is a young cluster currently forming at the intersection
of two filaments (Cortese et al. 2004) with complex gas density
and temperature structures (Ghizzardi et al. 2010).

As seen from Fig.7, right panel, large (greater than four ar-
cmin) offsets are only seen in nearby clusters (seven out of the
eight clusters withDSZ−X > 4 have redshifts lower than 0.08).
They remain smaller than the cluster size, as expected for offsets
dominated by physical effects. On average, the offsets tendto de-
crease with increasing redshift and seem to become independent
of redshift abovez∼ 0.3. This is due to the decreasing contribu-
tion of possible physical offsets, which become unresolved. The
overall offset, including the absolute reconstruction uncertainty,
remains smaller than the cluster size for most of the clusters in
the ESZθ500 (Fig. 7, right panel). However, we expect that it
will be of the order of cluster size for clusters at higher redshifts
than the range currently probed. This positional offset is there-
fore an additional source of uncertainty in the cluster position
which needs to be taken into account in the follow-up observa-
tions for candidate confirmation.

6.2. Cluster size-Y degeneracy

The MMF algorithm, and more generally algorithms that are
based on the adjustment of an SZ profile to detect clusters, gen-
erally perform better than algorithms which do not assume an
SZ profile. The GNFW profile used in the present study corre-
sponds to a shape function characterised by two parameters,the
central value and a characteristic scaleθs (with θs = θ500/c500
and c500 is the concentration parameter). Simulations showed
that the intrinsic photometric dispersion of the recoveredinte-
grated Compton parameter, with a GNFW profile, could be of
order 30% (see Fig.8) even with the prior information on the
pressure profile. This is due to the difficulty of estimating the
cluster size, which in turn is degenerate with the SZY estimate.

This cluster size-Y degeneracy is illustrated, here using PwS,
in two extreme situations (Fig.9) showing the likelihood plots
(integrated Compton vs cluster size) of an extended high S/N
cluster such as Coma (blue contours) and an unresolved S/N = 6
cluster (black contours). In both cases, the integrated Compton
parameterY is highly correlated with the estimated cluster size.
We find a correlation coefficientρ = 0.91 andρ = 0.75 for Coma
and the “unresolved cluster” respectively. On average overthe
ESZ sample we find a correlation ofρ = 0.85. The degener-
acy between cluster size andY is extremely detrimental, as it
will more than double the average fractional uncertainty relative
to theY value in the case where we knew the true value ofθs
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Fig. 8. Input versus recovered integrated Compton parameter
from MMF3, based on simulations for the SZ challenge.
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perfectly. As a result, any attempt to constrain the clustersize
(equivalentlyθs), fixing or assuming a prior for its value, brings
a significant reduction on theY value dispersion.

The issue of the cluster size-Y degeneracy is of particular
importance in the case ofPlanck, for which a vast majority of
clusters are only marginally resolved. This issue is also crucial
when one wants to use the SZ signal as a mass proxy. Indeed,
the dispersion inY due to the cluster size-Y degeneracy is likely
to dominate the intrinsic scatter of order 10% of this mass proxy
(da Silva et al.(2004), Arnaud et al.(2007)).

As a result, we have re-estimated the integrated Compton
parameter for all the ESZ candidates with prior informationon
their sizes. We have chosen the X-ray sizes (θ5R500) derived from
the X-ray luminosities,L500, as detailed inPiffaretti et al.(2010),
as suitable estimates of the cluster sizes. Using the MMF3 ver-
sion implemented in HFI Core team and SZ validation team,
Y5R500 were thus re-computed from thePlanck channel maps
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Fig. 11. Ratio of predicted vs observedY5R500 for the MCXC
clusters as a function of the X-ray luminosityL500 used to esti-
mate the cluster properties (radius and integrated Comptonpa-
rameter). The light-blue diamonds indicate a cut of 6 in predicted
S/N corresponding to the ESZ selection criterion.

at fixed X-ray position and with imposed cluster size equal to
the X-ray luminosity basedθ5R500. The integrated Compton pa-
rameterY was re-estimated for all the clusters with known X-
ray counterparts, being the 158 ESZ candidates identified with
known clusters from the MCXC and the nine ESZ clusters con-
firmed by XMM-Newton as single objects.

Fig. 10, left panel, illustrates the effect of fixing the posi-
tion and the cluster size, in the GNFW profile, toθ5R500 for the
158 ESZ identified clusters. The figure displays the measured
Y5R500 values versus the predictedYLX

5R500 values using X-ray lu-
minosities. The squares stand for integrated Compton param-
eters obtained from the blind detection whereas the diamonds
are integrated Compton parameters re-extracted from thePlanck
channel maps for the MCXC-identified clusters. Figure10, right
panel, displays the ratio of blind to predictedY5R500 versus the
ratio of estimated cluster size from blind detection to X-ray clus-
ter size derived from X-ray luminosity. This clearly confirms for
the 158 identified clusters that an overestimate of cluster size in-
duces an overestimate of the SZ signal. As seen in the Fig.10
(left panel), the scatter is significantly reduced from about 43%
to 34% by imposing a cluster size. Likewise the offset changes
from 80% to 14%.

The dispersion in the predicted integrated Compton parame-
ter is affected by the intrinsic dispersion in theL500-M relation
used to derive the predicted SZ quantities as shown in Fig.11.
The selection criterion S/N≥ 6 (blue diamonds in the figure)
used to construct the ESZ sample indicates that the high S/N
clusters are biased towards larger SZ signals, showing thatthe
obtained positive offset in Fig.10(left panel) is indeed expected.

As emphasised, a prior on the cluster size helps to break the
degeneracy betweenY and cluster-size estimates. As a conse-
quence, the better the cluster size estimate, the more reliable
the ComptonY parameter estimate. From a selected subsam-
ple of 62 ESZ clusters with XMM-Newton archival data (Planck
Collaboration 2011d) we have derived accurate estimates of the
X-ray sizes, without using the X-ray luminosities, and theY500
were re-evaluated on thePlanckchannel maps, allowing us to
tightly constrain the local SZ versus X-ray scaling properties.
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Fig. 10. Left: The scatterplot of the measured integrated Compton parameterY5R500 from the 158 X-ray identified ESZ clusters
against the predictedYLX . Black squares: Estimated cluster size from blind detections. Red diamonds: Re-computed integrated
Compton parameter at X-ray positions and with X-ray derivedcluster size. Right: The ratio between theY values and the predicted
YLX against the ratio between the estimated cluster size and thepredicted size (θ/θX).

As shown in Appendix A ofPlanck Collaboration(2011d), the
scatter is reduced even more than in Fig.10 (left panel) and no
offset is observed any more between the predicted and measured
Y500 values.

6.3. Systematic effects

Due to the cluster size-Y degeneracy discussed above, beam un-
certainties are likely to have a significant impact onY estimates
for our candidates because they affect both the original detec-
tion and the estimation of cluster size. The beams can be charac-
terised by their shapes and the associated accuracies. The beams
for each frequency channel, used for the detection andY esti-
mate with all methods presented in this study, were assumed
Gaussian with FWHM givenPlanck HFI Core Team(2011b).
Uncertainties on the recovered beams have been estimated in
Planck HFI Core Team(2011b) and found to range between
1 and 7% (from 100 to 857 GHz). These uncertainties on the
beams have been propagated to theY measurements by applying
the MMF3 algorithm on the channel maps varying the beam size
within the uncertainties at±1σ. In doing so we treat differently
the ESZ clusters with known X-ray cluster size, for which X-ray
positions and estimatedθ5R500 are fixed, and the ESZ clusters or
candidate clusters without estimated cluster size for which the
Y were re-estimated without prior information. We find that the
uncertainty on the obtainedY5R500 is of the order of 10% across
the ESZ sample.

The Planck HFI maps used for the cluster extraction are
calibrated to better than 2% for frequencies from 100 to 353
GHz, and to better than 7% beyond [seePlanck HFI Core Team
(2011b)]. This uncertainty in the calibration is accounted for
again by performing the SZ-candidate detection with the MMF3
algorithm on the channel maps. We find that on average, the cal-
ibration uncertainty propagates into an uncertainty on theY less
than 2%. The highestPlanck-HFI frequencies, with the largest
calibration uncertainties, have a low impact on the SZY mea-
surement and thus do not impact significantly the overall error
budget.

Table 3. Systematic error budget on theY5R500 values for the
ESZ clusters

Source Beam Calibration Colour Astrophysical
correction contamination

Error
contribution 8% 2% 3% 3%

Finally, we have checked that the colour corrections, i.e.,the
average SZ signal in the HFI bandpasses, induces less than a
3% difference on the estimatedY5R500. The SZ-candidate de-
tection and theY estimates by the MMF3 algorithm were thus
performed without taking into account the integration of the SZ
spectrum in thePlanckbandpasses is negligible.

Table 3 summarises the effects of beam, calibration, and
colour correction. It shows that the beam effect is the ma-
jor source systematic uncertainty in the SZ signal estimate. It
is worth noting that the systematic uncertainties are not in-
cluded in the uncertainties quoted in the ESZ table providedat
http://www.rssd.esa.int/Planck, (Planck Collaboration 2011g).

6.4. Contamination by astrophysical sources

Galactic and extragalactic sources (both radio and infrared
galaxies) are known to lie in the interior of galaxy clustersand
hence are a possible source of contamination for the SZ clusters
and candidates (Rubiño-Martı́n & Sunyaev 2003; Aghanim et al.
2005; Lin et al. 2009).

In the course of ESZ validation, we have gone through an in-
spection of thirteen known clusters which show some poor qual-
ity flags. All these clusters were annotated and the notes canbe
found in Planck Collaboration(2011g). Ten of them are likely
to be contaminated by dust emission from our Galaxy or by IR
point sources in their vicinity. Two of them were found to be
contaminated by NVSS [at 1.4 GHz,Condon et al.(1998)] ra-
dio sources that are clearly seen in the LFI channels. Combining
data from SUMSS [at 0.85 GHz,Bock et al.(1999)], NVSS,
and Planck’s LFI and HFI frequencies we find that most ra-
dio sources in the ESZ sample have a steep spectrum which
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makes their contamination to the SZ signal negligible. Three
additional clusters (beyond the thirteen), have relatively bright
(S1.4GHz > 0.2 Jy) radio sources in their vicinity (r < 15 arcmin).
NVSS+LFI data reveal flat spectra (indexes betweenα = 0 and
α = −0.5). The flux of the radio sources is thus still significant
and hence the SZ signal could be affected by their presence.

A statistical analysis has been performed in order to ex-
plore the astrophysical contamination over the entire ESZ sam-
ple, rather than on an individual cluster basis.

In order to exhibit the initial average level of contamination
prior to the use of the MMF algorithm, we have stacked cutouts
4.5 degrees on a side from the channel maps centred at the ESZ
cluster/candidate positions from 100 to 857 GHz using a stack-
ing library17 detailed inDole et al.(2006) andBethermin et al.
(2010). TheY values per frequency, obtained from aperture pho-
tometry on the stacked cutouts, are displayed in red triangles
Fig. 12. The spectral signature normalised to the averaged inte-
grated Compton-yover the whole ESZ sample shows quite good
agreement with the theoretical SZ spectrum at low frequencies
(Fig. 12, black solid line). Above 353 GHz the signal is highly
contaminated by IR emission from Galactic dust and IR point
sources.

The Y measurements, per frequency, of the MMF3 algo-
rithm normalised to the integrated Compton-y are averaged over
the ESZ sample and the resulting spectral energy distribution is
compared with the normalised SZ spectrum (see Fig.12, blue
crosses). The excess of emission at high frequencies is signifi-
cantly reduced by the filtering technique of the MMF algorithm,
reinforcing the idea that most of the excess at the highest fre-
quencies is due to large-scale (larger than the beam) fluctua-
tions in Galaxy emission. The remaining excess after the filter-
ing could be due to a combination of small-scale Galactic fluc-
tuations and/or infrared galaxies. In order to quantify theeffect
of this residual IR emission on the integrated Compton-y deter-
mination, an SZ spectrum was fitted to the averaged spectrum.
The normalisation was left free. The displayed error bars con-
tain the dispersion of the measuredY per frequency and, added
in quadrature, the uncertainties due to the beam, the colourcor-
rection, and the calibration (∼ 10%,∼ 3%,∼ 2% respectively).
The best value for the normalised integrated Compton parameter
is Yfit = 1.01, showing an excellent agreement with the expected
spectrum despite the IR excess emission at high frequencies. The
same procedure was applied to the 100, 143, 217, and 353 GHz
Y values and led toYfit100−353 = 0.97. This shows that, on average,
the residual IR contamination has a negligible effect (∼ 3%) on
the integrated Compton-y value estimated for the ESZ sample.

7. Purity and completeness

The ESZ sample is characterised by the fact that a significant
fraction of the clusters and candidate clusters lies near a selection
cut. In a catalogue of this sort, the properties of the catalogued
clusters will not be representative of the true underlying cluster
population. For example, if the SZ signal of a cluster is related
to a different cluster property such as mass (collectively referred
to as ‘scaling relations’) the observed integrated Compton-y pa-
rameter values,Y, will be biased near the selection cut, an effect
known as Eddington and Malmquist biases [for discussions ina
cluster context seeMantz et al.(2010); Andersson et al.(2010)].

For the full ESZ sample, we do not always have other clus-
ter properties to relate the integrated Compton-y to, but we can

17 http://www.ias.u-psud.fr/irgalaxies/ (Bethermin et al. 2010)
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Fig. 12. Average contamination of the ESZ sample by astro-
physical sources. Blue crosses: AverageY measurements from
MMF3 algorithm normalised to the integrated Compton-y. Red
triangles:Y, obtained from aperture photometry on the stacked
cutouts in the channel maps prior filtering by the MMF. Black
solid line: Normalised theoretical SZ spectrum.

nevertheless examine some statistical effects of selection. In or-
der to do this, we generate large mock cluster catalogues whose
properties are designed to mimic those of the observed sample.
To impose a selection cut on the mock catalogues, we use the
observedrelation betweenY500 and S/N from the region signif-
icantly above the selection cut and extrapolate below it, along
with an estimate of scatter again from observations. This iscar-
ried out in several redshift bins, and leads to a predicted S/N–Y
scaling given by

S/N = 101.38±0.03 (1+ z)−5.92±0.24
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with scatterσlog−log = 0.16 in log-log scale. We then construct
large mock catalogues of clusters through drawing of Poisson
samples from theJenkins et al.(2001) mass function normalised
with σ8 = 0.8, a value consistent with the latest WMAP con-
straints. To each cluster and consistent withPlanckobservations,
we assign values ofY5R500 by adopting theY–M scaling rela-
tion from Planck Collaboration(2011d). An S/N value is then
assigned as described above, and the cut imposed to create the
mock catalogue.

We first use these simulations to estimate the completeness
of the ESZ sample as a function ofY5R500. For clusters within
a given bin inY5R500, we extract the fraction of mock clus-
ters which lie above the selection cut. The result is shown in
Fig. 13 (solid line), and indicates that the sample becomes sig-
nificantly incomplete (less than 90% complete) belowY5R500 ≃

0.013 arcmin2. This result is fairly insensitive to the assumed
mass function normalisation. For example, changing toσ8 = 0.9
(dashed line) causes only small variations in the completeness
function. For this case, a completeness of 90% is obtained at
Y5R500 ≃ 0.010 arcmin2.

We then analyse the extent to which the meanY5R500 of the
observed clusters is biased in relation to the meanY5R500 of the
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Fig. 13.Expected completeness of the ESZ sample as a function
of Y5R500, estimated from mock cluster catalogues.
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Fig. 14. Expected meanY5R500, as a function of cluster mass,
for the observed sample and for the predicted underlying clus-
ter sample. At low masses, the observed mean rises above the
true mean due to Malmquist bias.

underlying cluster distribution, through those clusters with low
Y5R500 for a given mass being lost via selection. The underlying
meanY5R500 in the mock samples is given by the inputY500–
M500 scaling relation fromPlanck Collaboration(2011d) and the
observedY5R500–Y500 scaling; as shown in Fig.14 the mean of
the observed clusters will be biased upwards from this, the effect
becoming significant forM500 < 6× 1014M⊙. Note that this bias
does not imply that theY5R500 measurements for the ESZ clusters
are systematically wrong; the bias is because the selectioncut
prevents those clusters being representative of the true cluster
population at those masses.

Finally, numerical simulations based on thePlanck Sky
Model were used to estimate the purity of thePlanckSZ cat-
alogue. They showed on a simulated sky that a cut in S/N of
five ensures 100% purity of the obtained sample (see Fig.15).
However, the simulation does not capture the entire complexity
of the real sky and, in particular, the contamination by astrophys-
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Fig. 15.Purity as a function of S/N from MMF3, based on sim-
ulations for the SZ challenge.

ical sources emitting above 217 GHz from IR sources and dust
emission or cold cores was found to be higher than expected. The
final ESZ sample obtained after applying the selection criterion
cut in S/N of 6 contained 190 SZ candidates. The validation of
the sample showed that one of them was found to be a spurious
source identified with dust emission and it was rejected. There-
maining candidate new clusters are to be confirmed. The purity
of the ESZ sample thus lies between about 95% and 99%.

Although an attempt to characterise the completeness and
purity is made, we do not provide a fully characterised selection
function along with the ESZ sample. The cluster size-Y degen-
eracy discussed above, together with the large scatter in the con-
tamination level of the SZ detections due mostly to dust emis-
sion, makes it difficult to draw a simple relation between the
S/N limit used to construct the sample and the measuredY5R500.
It is thus not presently possible to provide a reliable mass limit
to our sample. When the telescope beam is larger than the cluster
size, a survey is limited by SZ signal. Then, since for the SZ sig-
nal the redshift dependence enters through the angular-diameter
distance rather than the luminosity distance, the mass selection
function is more uniform in SZ than in X-ray surveys. However
in our case most of the clusters detected byPlanckare at nearby
redshifts (zmedian = 0.15) and the majority are resolved, adding
even more complexity to the selection function.

8. Statistical characterisation of the ESZ sample

The ESZ sample is the first all-sky sample of high S/N SZ-
detected clusters of galaxies produced byPlanck. Its high re-
liability is ensured by the high S/N of the reported detections
and by the subsequent validation process. The S/N of the objects
in the sample, obtained from blind detection using MMF3 on
the reference channel maps, are displayed in Fig.16. They range
between 6 and 29 with median S/N of about eight. Six clusters,
including A2163 with S/N = 26 and Coma with S/N = 22, are
in the tail of the S/N distribution with S/N above 20. The twelve
confirmedPlanck new SZ clusters, included in the ESZ, have
their S/N distributed between 6.3 and 11.5. Additional confirmed
new clusters with lower S/N are given inPlanck Collaboration
(2011b). The eight candidate new clusters yet to be confirmed
have S/N ranging from 6 to 8.5.
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Fig. 16. Distribution of S/N (for the full ESZ sample: clusters
and candidate clusters).
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Fig. 17.Distribution of ESZ sample in integrated Compton pa-
rameterY.

The ESZ provides us with measures of the integrated
Compton parameter within a 5R500 sphere,Y5R500, for 189 clus-
ters or candidates. For about 80% of the known clusters in the
ESZ, this is the very first SZ measure performed in their direc-
tion. The integrated Compton parameter of the whole sample,
displayed in Fig.17, shows that the SZ signal extends over about
two orders of magnitude from about 1.5 × 10−3 to 120× 10−3

arcmin2. Unsurprisingly, the largest value is that of the Coma
cluster. Moreover, the estimated cluster sizes from the MMF3
algorithm for the ESZ clusters and candidates are all above
5θ500 = 8 arcmin, indicating that the high S/N clusters under
study can all be considered as extended sources. We compare the
estimated cluster size (from blind detection) with the X-ray clus-
ter size obtained from the X-ray observation of the confirmed
SZ clusters, considered as a representative cluster size. We find
that the SZ blind size is generally larger than the X-ray cluster
size; it can be two times larger. As discussed previously, due to
the cluster size-Y degeneracy this affects the integrated Compton
parameter measurement.

Using the MCXC compilation and the XMM-Newton ob-
servations of the confirmedPlanck SZ candidates, we obtain
masses,M500, estimated from mass proxies (luminosity,L–M
relation, orYX) for 167 clusters out of the 189 of the ESZ sam-
ple. Furthermore, using the redshift information compiledin the
MCXC that we retrieved during the validation process and the
redshift estimates from XMM-Newton follow-up observations,
we gather the redshifts for 173 clusters of the ESZ sample. The
distributions of redshifts and masses are exhibited in Figs. 18
and19, respectively. The redshifts of the ESZ sample are dis-
tributed in the range of small to moderate redshifts from about
z = 0.01 to z = 0.55, with a median redshift of 0.15. The vast
majority of the ESZ clusters, 86%, are thus nearby ones lyingbe-
low z= 0.3. Most of the newly-discovered clusters confirmed by
XMM-Newton within the ESZ sample have redshifts of the or-
der of 0.4. Among the newPlanckclusters confirmed by XMM-
Newton, but with S/N lower than 6, released outside the ESZ we
find a cluster withz = 0.54. As for the mass distribution of the
ESZ clusters, it spans over a decade with cluster masses ranging
from 0.9 to 15× 1014 M⊙ within a surveyed volume of the order
of 3.5×1010Mpc3. It is worth noting that in surveying the whole
sky, Planckhas a unique capability to detect rare massive clus-
ters in the exponential tail of the mass function. Indeed, among
the 21 newly discovered clusters confirmed by XMM-Newton
in total (pilot follow-up programme and high-S/N programme)
three have total masses of 10×1014 M⊙ or larger and two of them
are high S/N clusters in the ESZ sample.

In order to check the consistency of the cosmological model,
we compare the measuredY5R500 with the X-ray predictedYLX

5R500
that is derived in a given cosmology. To do so, we use the 158
ESZ clusters with X-ray-based size estimates. We vary the cos-
mological parameterH0, in a range of 30 to 100 km/s/Mpc as-
suming a flat universe (Ωm = 0.3 andΩΛ = 1 − Ωm). The
integrated Compton parameters of the 158 clusters were re-
estimated from thePlanck data with the size 5R500 obtained
for each explored set of cosmological parameters. The pre-
dicted SZ signals are then compared with the SZ signal mea-
sured byPlanck providing us with the best value forH0. We
find thath is barely constrained, with a best estimate ofH0 =

71+10
−20 km s−1 Mpc−1 (1σ uncertainty).

8.1. Comparison with existing catalogues

After the first blind detection of galaxy clusters through their SZ
signature by SPT (Staniszewski et al. 2009) and further discover-
ies by both SPT (Vanderlinde et al. 2010) and ACT (Menanteau
et al. 2010), Planckwith its broad frequency coverage provides
the first sample of SZ clusters detected blindly over the whole
sky. For its first and early release,Planckdelivers to the com-
munity 189 clusters and candidates with S/N≥ 6 in the ESZ
sample, and an additional ten clusters at lower S/N. In total, the
30 new SZ-discovered clusters or candidates byPlanckdouble
the number of new clusters provided by ACT and SPT during
the last year based on their 455 deg2 and 178 deg2 respective
surveys. Moreover,Planckprovides the first homogeneous SZ
measurements for many known X-ray or optical clusters.

It is worth examining the distribution of the SZ clusters in
the M-z plane (see Fig.20). The range of redshifts covered by
thePlanckESZ sample, fromz = 0.01 to 0.55 with more than
80% of the clusters lying belowz = 0.3, is quite complemen-
tary to the high redshift range explored by ACT and SPT exper-
iments, fromz ≃ 0.15 to 1.2. The comparison of the estimated
masses from the different experiments is complicated by thefact
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that they are obtained using different approaches, from theuse
of X-ray proxies to that of mass-significance relations. Overall,
we can see from Fig.20 that the SPT cluster masses quoted in
Vanderlinde et al.(2010) range between 1 and 5× 1014 M⊙. As
mentioned previously,Planck, being an all-sky survey, spans a
broader cluster mass range from 0.9 to 10× 1014 M⊙ and is par-
ticularly adapted to the detection of very massive clustersin the
tail of the distribution.

The combination ofPlanckwith ACT and SPT experiments
already nicely samples theM-z plane (see Fig.22). In particu-
lar the highest redshift clusters are accessible to ACT and SPT
and the most massive clusters toPlanck. Moreover,Planckal-
ready samples the low-mass low-redshift space quite well and
will provide us with a robust reference point in this range. With
the deeper observations of the whole sky, combined with ap-
propriate follow-up programmes for redshift estimates,Planck
will be able to explore the cluster mass function in its most cos-
mologically interesting regimes: high redshifts and high masses.
However, the detection of the highest redshift clusters is likely
to be hampered by the dilution byPlanckbeam. A combination
of the Planck ACT, and SPT carefully taking into account the
selection functions of all three experiments will thus be needed
to fully take advantage of SZ clusters as a cosmological probe.

Moreover, combining the data from a sample of clusters
with different resolutions (including high-resolution imaging
of SZ clusters with interferometric experiments like SZA and
CARMA) will allow us to perform detailed studies of extended
clusters and have a much better handle on the pressure profile
from SZ data directly.

Although the ESZ sample is not a catalogue with a fully
characterised selection function, it is worth comparing itto
the ROSAT-based cluster catalogues. To do this we take ad-
vantage of the MCXC, which contains not only NORAS and
REFLEX but other survey-based and serendipitous cluster cata-
logues. Using the homogenised cluster properties of the MCXC
compilation, we can moreover predict the SZ signal and the S/N
ratio for a measurement of the ComptonY parameter. In order
to do this we estimate thePlancknoise from real noise maps at
the cluster positions using MMF3. Using this information, we
compared the number of detected clusters in the ESZ at S/N ≥ 6
to the number predicted at that level of significance. We find
very good overall agreement in terms of detected and predicted
clusters, despite the fact that the predictions we use are based
on X-ray-selected clusters from the MCXC compilation and that
the cluster model used for the prediction does not account for the
dispersion in the scaling relations, and despite the noise proper-
ties of channel maps being inhomogeneous across the sky. Only
26 MCXC clusters with predicted S/N≥ 6 are not within the
ESZ sample. For 20 of these clusters information on the pres-
ence of a cool core or peculiar morphology is available in the
literature. We find that 13 of these host cool cores. For these
clusters, the X-ray luminosity is boosted due to the centralden-
sity peak. The mass predicted from the luminosity, and hence
the predicted SZ signal, is over-estimated. For 3 clusters the lu-
minosity measurements adopted in the MCXC are not reliable
because of evidence of AGN contamination (e.g., A689). The re-
maining four clusters are peculiar because they have very asym-
metric morphologies or are located in superclusters (e.g.,A3526
in Centaurus and the A901/A902 system), making the SZ signal
predictions highly uncertain.

There is a large overlap between thePlanckESZ sample and
the RASS-based cluster catalogues, in particular REFLEX and
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Fig. 18. Distribution of ESZ sample in redshift. The 177 iden-
tified ESZ clusters with redshift (from optical or X-ray obser-
vations) are in blue, the ESZ clusters confirmed with XMM-
Newton in red, and the RASS clusters (number density divided
by 10) in black solid line.
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Fig. 19.Distribution of ESZ sample in mass. The 167 identified
ESZ clusters with masses are in blue, the ESZ clusters confirmed
with XMM-Newton in red, and the RASS clusters (number den-
sity divided by 10) in black solid line.

NORAS (Fig.21). The 162 SZ candidates identified with X-ray
clusters from the MCXC compilation are predominantly clus-
ters from the REFLEX (74) and NORAS (59) surveys, which
corresponds to an overlap of 17% and 13% with the REFLEX
and NORAS surveys respectively. The eleven ESZ clusters con-
firmed by XMM-Newton with S/N ≥ 6 were found to lie just
around the REFLEX flux limit (only two are above this limit).

It is thus interesting to compare the ESZ sample mass and
redshift distributions with those of the RASS-based catalogues.
This is illustrated in Figs.18 and19 in which the RASS-based
mass and redshift distribution divided by ten are over-plotted on
the ESZ histograms in thick solid line. We find that the ESZ
clusters with masses below 4× 1014 M⊙ represent only 12%
of the RASS-based clusters in the same mass range; however
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Fig. 21.The 158 clusters from thePlanckESZ sample identified
with known X-ray clusters in redshift–luminosity space, com-
pared with serendipitous and RASS clusters.

they represent 90% of the RASS-based clusters at higher masses
M ≥ 9×1014 M⊙. As for the redshift distribution, thePlanckESZ
clusters represent 14% of the RASS-based clusters with redshifts
lower than 0.3 and they constitute 31% of the RASS-based clus-
ters abovez= 0.3.

The SDSS-MaxBCG cluster catalogue is the basis of the
study of optical-SZ scaling relations (Planck Collaboration
2011e) in Planckdata. It is used in particular to measure an in-
tegrated Compton parameter,YMaxBCG

5R500 , from thePlanckchannel
maps at the MaxBCG position using fixed cluster size according
to published weak-lensing calibrated mass–richness relations for
the MaxBCG catalogue. Only 20 clusters from the MaxBCG
have a measured S/N larger than six and are thus expected to
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Fig. 22. The ESZ sample compared to the previously observed
SZ clusters in redshift–mass space.

be within the ESZ selection18. Among them, 18 are effectively
associated with ESZ clusters (within a search radius of five ar-
cminutes). One of the two clusters not in the ESZ sample is Abell
1246 (z = 0.18). The second is a fortuitous association with a
low-redshift (z = 0.06) group of the MaxBCG catalogue near
the position of Abell 1795, which is detected in the ESZ cata-
logue.

9. Summary

Thanks to its all-sky coverage and to its frequency range span-
ning the SZ decrement and increment,Planckprovides us with
the very first all-sky S/N-selected SZ sample. This early release
sample of high-reliability SZ clusters and candidates (S/Nfrom
6 to 29) was constructed using a matched multi-filter detection
technique. It was validated usingPlanck-internal quality assess-
ment, external X-ray and optical data, and a multi-frequency
follow-up programme for confirmation relying mostly on XMM-
Newton snapshot observations. The ESZ sample comprises 189
candidates, of which 20 are candidate new clusters and 169 have
X-ray or optical counterparts. Of these, 162 were observed in
X-ray. Planck provides for the first time SZ observations for
about 80% of the ESZ clusters and hence a homogeneously mea-
sured SZ signal. Twelve candidate clusters in total, out of the 20,
have been confirmed. One candidate was confirmed by AMI and
WISE. Eleven were confirmed with XMM-Newton, including
two candidates found to be double clusters on the sky.

The clusters in the ESZ sample are mostly at moderate red-
shifts lying betweenz = 0.01 andz = 0.55, with 86% of them
belowz= 0.3. The ESZ-cluster masses span over a decade from
0.9 to 15×1014 M⊙, i.e. up to the highest masses. The ESZ, con-
structed using clear selection criteria, is a nearly complete (90%
aboveE−2/3(z)Y5R500D2

A ≃ 4 × 10−4 Mpc2), high-purity (above
95%) SZ cluster sample. However, as mentioned above, it is not
possible at the present stage to provide users with a full selection
function.

Thanks to its all-sky coverage,Planckhas a unique capabil-
ity to detect the rarest and most massive clusters in the exponen-
tial tail of the mass function. Planck is detecting new clusters

18 This number accounts for the possible association of a candidate
new cluster with a cluster fromWen et al.(2009).
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in a region of the mass-redshift plane that is sparsely populated
by the RASS catalogues. As a matter of fact, two of the newly-
discovered clusters in the ESZ and confirmed by XMM-Newton
have estimated total masses larger than 1015 M⊙. Furthermore,
as indicated by XMM-Newton snapshot observations, most of
the new clusters have low luminosity and a disturbed morphol-
ogy, suggestive of a complex dynamical state.Planckmay thus
have started to reveal a non-negligible population of massive
dynamically-perturbedobjects that is under-representedin X-ray
surveys.

A significant fraction of the ESZ clusters have good archival
X-ray and optical data. In addition, the ESZ sample should mo-
tivate follow-up effort by the community. It will hence serve as
a valuable reference for studies of cluster physics at low and
moderate redshifts (e.g., galaxy properties versus intra-cluster
gas physics, metallicities, dynamical state and its evolution,
etc). These studies will require multi-wavelength observations
including further SZ observations at higher spatial resolution
and observations in X-rays (with XMM-Newton, Chandra, and
Suzaku), in the optical (imaging and spectroscopy), and in the
radio (e.g., with LOFAR).

The ensemble of early results on the SZ signal inPlanck us-
ing a selected local sub-sample of ESZ clusters with high-quality
XMM-Newton archival data (Planck Collaboration 2011d) and
using the compilation of about 1600 MCXC clusters (Planck
Collaboration 2011c), shows excellent agreement between ob-
served SZ quantities and X-ray-based predictions underlining
the robustness and consistency of our overall view of ICM prop-
erties. These results shed light on long-standing questions re-
garding the consistency between the SZ and X-ray view of
hot gas in galaxy clusters. In contrast, the SZ signal-to-optical-
richness relation measured from the SDSS-MaxBCG cluster cat-
aloguePlanck Collaboration(2011e) has a lower SZ signal than
predicted. Extensive SZ-optical statistical studies of this kind are
new. The result, and the origin of the difference, may be re-
lated to the cluster population, such as the existence of a sub-
population of X-ray under-luminous clusters, or to selection ef-
fects in optical cluster catalogues.

In the future,Planckwill deliver a larger all-sky SZ cluster
catalogue. The characterisation of thePlanckselection function
together with the construction of this legacy catalogue, includ-
ing its validation using follow up observations in particular with
XMM-Newton, will be one of the major activities.

The usefulness of the SZ cluster abundance in achieving pre-
cise cosmological constraints relies on several theoretical and
observational requirements. One of them is the ability to ob-
tain redshift measurements for each confirmed SZ cluster. Cross-
correlation ofPlanck data with the only available large opti-
cal survey to date, the Sloan Digital Sky Survey (SDSS), can
be used to confirmPlanckcandidates and provide redshift es-
timates on a area restricted to the SDSS coverage area. The
XMM-Newton confirmation observations can provide redshift
estimates, but only for the X-ray brightest clusters. A significant
follow-up effort in the optical (with ESO, ENO, and NOAO fa-
cilities) has thus been put in place by thePlanckcollaboration in
order to obtain redshifts (photometric and spectroscopic)for the
SZ clusters. Another key requirement for the cosmological use
of the SZ catalogue is the derivation of the fundamental rela-
tion between the integrated Compton parameter,Y, and the clus-
ter mass and its evolution with redshift.Planck Collaboration
(2011d) have calibrated the local relation betweenY andYX, the
analogue of the SZ signal, measured from the X-ray gas mass
and temperature, to an unprecedented precision and, for thefirst

time, have demonstrated its remarkably small intrinsic scatter.
We will build an even more robust and controlled observational
proxy of the cluster mass which is fundamental for cosmological
applications. To do this, specific studies based on the compari-
son of mass estimates from lensing, X-rays and SZ observations
for a selected representative sample of the SZ catalogue will be
most crucial.

Finally, combiningPlanck all-sky SZ data with near fu-
ture and planned observations of the large-scale structureby
large surveys, e.g., PANSTARRS, LOFAR, Euclid, LSST, and
e-ROSITA, will allow us to understand the physical processes
governing large-scale structure formation and evolution.
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Appendix A: ESZ sample extract

TableA.3 is an extract from thePlanckESZ sample available at
www.rssd.esa.int/Planckaiming at presenting the content of the
released product. Four entries are given as examples for each cat-
egory (PlanckESZ known clusters,PlanckESZ new confirmed
clusters,PlanckESZ clusters candidates). In the present extract,
only Galactic longitudes and latitudes are given. The ESZ sam-
ple contains, in addition, the right ascensions and declinations
for all the entries.

For each entry the following fields are provided:

– Name:PlanckName of Cluster Candidate
– GLON: Galactic Longitude fromPlanck
– GLAT: Galactic latitude fromPlanck
– S/N: Signal-to-noise ratio returned by the matched multi-

Filter algorithm (MMF3)
– ID: External Identifier ofPlanckClusters e.g. Coma, Abell

2163 etc
– z: Redshift of Cluster from the MCXC X-ray cluster compi-

lation unless otherwise stated in the individual notes
– ΘX: Angular size at 5R500 from X-ray data
– YPS X: Integrated Compton parameter at X-ray position and

within 5R500 (ΘX) in arcmin2,
– YERR

PS X: Uncertainty in Integrated Compton parameter at X-ray
position and within 5R500 (ΘX) in arcmin2

– Θ: Estimated angular size from matched multi-Filter
(MMF3),
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– Y: Integrated Compton parameter atPlanck position and
within Θ, from matched multi-Filter (MMF3) in arcmin2

– YERR: Uncertainty in Integrated Compton parameter at
Planck position and withinΘ from matched multi-Filter
(MMF3) in arcmin2
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Table A.1.ESZ sample.

Name GLON GLAT S/N ID z ΘX YPS X YERR
PS X Θ Y YERR

PLCKG111.0+31.7 110.98 31.73 28.93 A2256 0.06 83.14 0.0242 0.0009 NaN NaN NaN
PLCKG57.3+88.0 57.34 88.01 21.94 Coma 0.02 203.37 0.1173 0.0054 NaN NaN NaN
PLCKG239.3+24.8 239.28 24.77 25.67 A0754 0.05 90.56 0.0330 0.0012 NaN NaN NaN
PLCKG272.1-40.2 272.11 -40.15 25.90 A3266 0.06 84.19 0.0282 0.0012 NaN NaN NaN
PLCKG6.8+30.5 6.78 30.47 26.40 A2163 0.20 37.81 0.0173 0.0007 NaN NaN NaN
PLCKG340.9-33.3 340.89 -33.35 22.02 A3667 0.06 93.11 0.0266 0.0014 NaN NaN NaN
PLCKG266.0-21.3 266.04 -21.25 19.75 1ES 0657-55.8 0.30 26.96 0.0067 0.0003 NaN NaN NaN
PLCKG44.2+48.7 44.23 48.68 18.46 A2142 0.09 70.33 0.0241 0.0013 NaN NaN NaN
PLCKG93.9+34.9 93.92 34.91 17.31 A2255 0.08 58.11 0.0103 0.0006 NaN NaN NaN
PLCKG164.2-38.9 164.19 -38.89 13.79 A0401 0.07 74.42 0.0193 0.0016 NaN NaN NaN
PLCKG72.6+41.5 72.63 41.46 17.44 A2219 0.23 31.40 0.0085 0.0005 NaN NaN NaN
PLCKG263.7-22.5 263.67 -22.54 16.70 A3404 0.16 35.89 0.0064 0.0004 NaN NaN NaN
PLCKG97.7+38.1 97.74 38.12 14.65 A2218 0.17 31.96 0.0044 0.0003 NaN NaN NaN
PLCKG263.2-25.2 263.21 -25.21 11.24 A3395 0.05 76.98 0.0073 0.0009 NaN NaN NaN
PLCKG262.3-35.4 262.25 -35.37 15.19 ACO S0520 0.30 24.30 0.0034 0.0003 NaN NaN NaN
PLCKG74.0-27.8 73.97 -27.82 14.25 A2390 0.23 31.17 0.0056 0.0005 NaN NaN NaN
PLCKG332.2-46.4 332.23 -46.37 13.89 A3827 0.10 52.41 0.0086 0.0007 NaN NaN NaN
PLCKG265.0-48.9 265.01 -48.95 13.95 A3158 0.06 77.52 0.0117 0.0010 NaN NaN NaN
PLCKG115.2-72.1 115.16 -72.09 13.14 A0085 0.06 94.22 0.0210 0.0018 NaN NaN NaN
PLCKG316.3+28.5 316.35 28.54 12.85 A3571 0.04 124.14 0.0372 0.0031 NaN NaN NaN
PLCKG86.5+15.3 86.46 15.30 12.33 CIZA J1938.3+5409 0.26 24.59 0.0031 0.0003 NaN NaN NaN
PLCKG33.8+77.2 33.78 77.16 12.39 A1795 0.06 85.79 0.0169 0.0014 NaN NaN NaN
PLCKG6.5+50.5 6.48 50.55 13.36 A2029 0.08 77.99 0.0180 0.0015 NaN NaN NaN
PLCKG349.5-59.9 349.46 -59.95 13.93 ACO S1063 0.35 24.94 0.0046 0.0003 NaN NaN NaN
PLCKG186.4+37.3 186.39 37.26 12.61 A0697 0.28 25.00 0.0051 0.0005 NaN NaN NaN
PLCKG229.9+15.3 229.94 15.30 12.46 A0644 0.07 67.06 0.0116 0.0010 NaN NaN NaN
PLCKG149.7+34.7 149.73 34.70 11.57 A0665 0.18 34.94 0.0060 0.0005 NaN NaN NaN
PLCKG3.9-59.4 3.91 -59.42 12.06 A3888 0.15 38.39 0.0061 0.0005 NaN NaN NaN
PLCKG312.0+30.7 312.00 30.72 9.04 A3558 0.05 97.34 0.0223 0.0024 NaN NaN NaN
PLCKG313.9-17.1 313.87 -17.11 11.57 CIZA J1601.7-7544 0.15 40.63 0.0078 0.0007 NaN NaN NaN
PLCKG335.6-46.5 335.59 -46.46 10.17 A3822 0.08 57.18 0.0084 0.0008 NaN NaN NaN
PLCKG288.6-37.7 288.62 -37.66 9.86 A3186 0.13 35.86 0.0053 0.0006 NaN NaN NaN
PLCKG315.7-18.0 315.71 -18.04 11.44 A3628 0.10 48.10 0.0088 0.0008 NaN NaN NaN
PLCKG263.2-23.4 263.16 -23.41 10.08 ACO S0592 0.23 28.97 0.0032 0.0003 NaN NaN NaN
PLCKG149.2+54.2 149.24 54.19 11.58 A1132 0.14 36.78 0.0052 0.0005 NaN NaN NaN
PLCKG21.1+33.3 21.09 33.26 10.61 A2204 0.15 45.35 0.0076 0.0007 NaN NaN NaN
PLCKG322.0-48.0 321.96 -47.98 11.27 A3921 0.09 49.92 0.0053 0.0006 NaN NaN NaN
PLCKG182.4-28.3 182.44 -28.30 12.77 A0478 0.09 65.31 0.0167 0.0014 NaN NaN NaN
PLCKG242.0+14.9 241.97 14.86 10.49 A3411 0.17 31.37 0.0041 0.0005 NaN NaN NaN
PLCKG29.0+44.6 29.01 44.56 10.25 A2147 0.04 108.90 0.0148 0.0021 NaN NaN NaN
PLCKG228.5+53.1 228.50 53.13 12.20 Zw 3179 0.14 33.59 0.0022 0.0005 NaN NaN NaN
PLCKG62.9+43.7 62.93 43.71 10.03 A2199 0.03 138.17 0.0241 0.0023 NaN NaN NaN
PLCKG206.0-39.5 205.96 -39.48 9.26 MACS J0417.5-1154 0.44 20.43 0.0038 0.0004 NaN NaN NaN
PLCKG336.6-55.4 336.59 -55.45 10.29 A3911 0.10 47.65 0.0057 0.0006 NaN NaN NaN
PLCKG67.2+67.5 67.23 67.46 11.03 A1914 0.17 37.08 0.0057 0.0005 NaN NaN NaN
PLCKG92.7+73.5 92.73 73.46 11.26 A1763 0.23 27.79 0.0045 0.0004 NaN NaN NaN
PLCKG146.3-15.6 146.33 -15.59 7.10 CIZA J0254.4+4134 0.02 199.50 0.0392 0.0060 NaN NaN NaN
PLCKG112.5+57.0 112.46 57.04 9.81 A1767 0.07 56.20 0.0053 0.0006 NaN NaN NaN
PLCKG55.6+31.9 55.60 31.86 9.27 A2261 0.22 30.74 0.0049 0.0005 NaN NaN NaN
PLCKG58.3+18.6 58.28 18.59 9.19 CIZA J1825.3+3026 0.06 62.65 0.0087 0.0009 NaN NaN NaN
PLCKG159.9-73.5 159.86 -73.47 10.63 A0209 0.21 28.17 0.0053 0.0005 NaN NaN NaN
PLCKG282.5+65.2 282.49 65.17 8.49 ZwCl 1215.1+0400 0.08 60.24 0.0095 0.0012 NaN NaN NaN
PLCKG313.4+61.1 313.36 61.12 10.12 A1689 0.18 37.34 0.0071 0.0008 NaN NaN NaN
PLCKG53.5+59.5 53.52 59.54 8.50 A2034 0.11 44.04 0.0055 0.0008 NaN NaN NaN
PLCKG244.3-32.1 244.34 -32.14 8.39 RBS0653 0.28 24.88 0.0029 0.0004 NaN NaN NaN
PLCKG46.9+56.5 46.88 56.50 9.07 A2069 0.11 45.41 0.0067 0.0008 NaN NaN NaN
PLCKG294.7-37.0 294.67 -37.03 8.64 RXCJ0303.7-7752 0.27 22.29 0.0028 0.0004 NaN NaN NaN
PLCKG346.6+35.0 346.60 35.05 9.38 RXCJ1514.9-1523 0.22 26.97 0.0048 0.0006 NaN NaN NaN
PLCKG243.6+67.8 243.57 67.76 8.57 A1307 0.08 52.20 0.0062 0.0007 NaN NaN NaN
PLCKG166.1+43.4 166.13 43.39 9.23 A0773 0.22 28.20 0.0038 0.0004 NaN NaN NaN
PLCKG226.2+76.8 226.25 76.77 9.18 A1413 0.14 39.97 0.0058 0.0006 NaN NaN NaN
PLCKG107.1+65.3 107.11 65.31 8.85 A1758A 0.28 24.73 0.0031 0.0004 NaN NaN NaN
PLCKG42.8+56.6 42.83 56.62 8.36 A2065 0.07 63.04 0.0099 0.0011 NaN NaN NaN
PLCKG125.6-64.1 125.59 -64.14 10.47 A0119 0.04 88.65 0.0141 0.0017 NaN NaN NaN
PLCKG57.3-45.4 57.27 -45.36 8.11 MACS J2211.7-0349 0.40 21.56 0.0032 0.0004 NaN NaN NaN
PLCKG33.5-48.4 33.46 -48.43 9.24 A2384A 0.09 44.21 0.0054 0.0006 NaN NaN NaN
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Table A.2.The ESZ sample (continued)

Name GLON GLAT S/N ID z ΘX YPS X YERR
PS X Θ Y YERR

PLCKG241.8-24.0 241.78 -24.00 8.94 A3378 0.14 37.79 0.0038 0.0005 NaN NaN NaN
PLCKG46.5-49.4 46.50 -49.44 8.55 A2420 0.08 54.47 0.0064 0.0008 NaN NaN NaN
PLCKG304.9+45.5 304.90 45.45 8.99 A1644 0.05 88.28 0.0152 0.0018 NaN NaN NaN
PLCKG209.6-36.5 209.56 -36.49 7.96 A0496 0.03 126.18 0.0162 0.0021 NaN NaN NaN
PLCKG57.0-55.1 56.97 -55.08 8.16 MACS J2243.3-0935 0.45 17.55 0.0029 0.0004 NaN NaN NaN
PLCKG56.8+36.3 56.81 36.32 9.15 A2244 0.10 53.36 0.0058 0.0007 NaN NaN NaN
PLCKG57.6+34.9 57.61 34.94 9.54 A2249 0.08 52.39 0.0052 0.0007 NaN NaN NaN
PLCKG49.2+30.9 49.20 30.86 8.33 RXC J1720.1+2637 0.16 36.32 0.0043 0.0005 NaN NaN NaN
PLCKG6.7-35.5 6.70 -35.54 8.45 A3695 0.09 52.90 0.0059 0.0008 NaN NaN NaN
PLCKG77.9-26.6 77.91 -26.65 8.36 A2409 0.15 36.46 0.0040 0.0005 NaN NaN NaN
PLCKG8.9-81.2 8.94 -81.24 8.39 A2744 0.31 23.17 0.0042 0.0005 NaN NaN NaN
PLCKG106.7-83.2 106.73 -83.23 8.55 A2813 0.29 21.45 0.0036 0.0004 NaN NaN NaN
PLCKG269.5+26.4 269.52 26.42 8.40 A1060 0.01 216.51 0.0215 0.0029 NaN NaN NaN
PLCKG180.2+21.0 180.24 21.05 8.36 MACS J0717.5+3745 0.55 17.74 0.0028 0.0004 NaN NaN NaN
PLCKG241.7-30.9 241.74 -30.89 7.42 RXCJ0532.9-3701 0.27 22.43 0.0028 0.0004 NaN NaN NaN
PLCKG332.9-19.3 332.89 -19.28 7.72 CIZA J1813.3-6127 0.15 35.99 0.0043 0.0006 NaN NaN NaN
PLCKG48.1+57.2 48.05 57.18 7.14 A2061 0.08 54.65 0.0067 0.0010 NaN NaN NaN
PLCKG139.2+56.4 139.20 56.36 7.65 A1351 0.32 18.52 0.0012 0.0003 NaN NaN NaN
PLCKG306.7+61.1 306.68 61.06 8.02 A1650 0.08 57.80 0.0095 0.0012 NaN NaN NaN
PLCKG167.7+17.6 167.66 17.65 8.11 ZwCl 0634.1+4750 0.17 31.51 0.0045 0.0005 NaN NaN NaN
PLCKG49.3+44.4 49.34 44.38 7.40 A2175 0.10 42.77 0.0054 0.0009 NaN NaN NaN
PLCKG226.2-21.9 226.18 -21.91 7.28 A0550 0.10 45.53 0.0047 0.0007 NaN NaN NaN
PLCKG195.8-24.3 195.77 -24.31 7.23 A0520 0.20 31.04 0.0046 0.0006 NaN NaN NaN
PLCKG253.5-33.7 253.48 -33.72 6.73 A3343 0.19 26.95 0.0022 0.0004 NaN NaN NaN
PLCKG250.9-36.3 250.91 -36.26 8.62 A3322 0.20 27.92 0.0028 0.0004 NaN NaN NaN
PLCKG256.5-65.7 256.45 -65.71 7.77 A3016 0.22 26.97 0.0029 0.0004 NaN NaN NaN
PLCKG324.5-45.0 324.50 -44.97 6.22 RBS1847 0.10 44.97 0.0039 0.0005 NaN NaN NaN
PLCKG113.8+44.4 113.82 44.35 7.80 A1895 0.22 23.20 0.0012 0.0002 NaN NaN NaN
PLCKG125.7+53.9 125.71 53.86 7.36 A1576 0.30 20.94 0.0019 0.0003 NaN NaN NaN
PLCKG266.8+25.1 266.84 25.08 8.19 A3444 0.25 27.46 0.0027 0.0004 NaN NaN NaN
PLCKG216.6+47.0 216.62 47.02 7.48 RXC J0949.8+1707 0.38 19.99 0.0021 0.0004 NaN NaN NaN
PLCKG228.2+75.2 228.16 75.19 7.13 MACS J1149.5+2223 0.55 15.93 0.0016 0.0003 NaN NaN NaN
PLCKG342.3-34.9 342.32 -34.91 7.24 RXCJ2023.4-5535 0.23 24.13 0.0029 0.0004 NaN NaN NaN
PLCKG342.8-30.5 342.82 -30.46 6.01 A3651 0.06 54.80 0.0044 0.0009 NaN NaN NaN
PLCKG124.2-36.5 124.22 -36.49 7.74 A0115 0.20 31.15 0.0050 0.0007 NaN NaN NaN
PLCKG257.3-22.2 257.34 -22.18 7.13 A3399 0.20 25.71 0.0019 0.0003 NaN NaN NaN
PLCKG118.4+39.3 118.45 39.34 6.33 RXCJ1354.6+7715 0.40 17.24 0.0016 0.0003 NaN NaN NaN
PLCKG118.6+28.6 118.60 28.56 6.41 A2294 0.18 29.83 0.0022 0.0004 NaN NaN NaN
PLCKG229.6+78.0 229.64 77.96 7.45 A1443 0.27 21.40 0.0027 0.0004 NaN NaN NaN
PLCKG180.6+76.7 180.62 76.65 7.48 A1423 0.21 25.40 0.0027 0.0004 NaN NaN NaN
PLCKG2.7-56.2 2.75 -56.18 6.48 A3856 0.14 35.56 0.0031 0.0005 NaN NaN NaN
PLCKG347.2-27.4 347.19 -27.35 8.19 ACO S0821 0.24 24.78 0.0022 0.0004 NaN NaN NaN
PLCKG71.6+29.8 71.61 29.80 7.47 Zw 8284 0.16 27.18 0.0024 0.0004 NaN NaN NaN
PLCKG36.7+14.9 36.72 14.92 6.98 RXCJ1804.4+1002 0.15 35.28 0.0035 0.0006 NaN NaN NaN
PLCKG18.5-25.7 18.53 -25.72 7.30 RXCJ2003.5-2323 0.32 20.71 0.0027 0.0004 NaN NaN NaN
PLCKG237.0-26.7 236.96 -26.67 7.03 A3364 0.15 35.80 0.0030 0.0005 NaN NaN NaN
PLCKG273.6+63.3 273.64 63.28 7.30 A1437 0.13 37.96 0.0051 0.0007 NaN NaN NaN
PLCKG46.1+27.2 46.08 27.18 7.34 MACS J1731.6+2252 0.39 17.79 0.0021 0.0003 NaN NaN NaN
PLCKG49.7-49.5 49.67 -49.51 6.88 A2426 0.10 47.77 0.0038 0.0007 NaN NaN NaN
PLCKG143.2+65.2 143.25 65.22 7.34 A1430 0.21 24.27 0.0023 0.0003 NaN NaN NaN
PLCKG296.4-32.5 296.41 -32.49 7.20 ACO S0405 0.06 62.06 0.0044 0.0007 NaN NaN NaN
PLCKG269.3-49.9 269.31 -49.88 6.51 A3126 0.09 47.30 0.0040 0.0007 NaN NaN NaN
PLCKG83.3-31.0 83.29 -31.03 6.19 RXC J2228.6+2036 0.41 19.89 0.0021 0.0004 NaN NaN NaN
PLCKG304.7-31.7 304.67 -31.67 6.37 A4023 0.19 25.68 0.0020 0.0004 NaN NaN NaN
PLCKG39.9-40.0 39.86 -39.99 6.32 A2345 0.18 29.89 0.0031 0.0005 NaN NaN NaN
PLCKG56.0-34.9 55.98 -34.89 7.03 A2355 0.12 33.85 0.0036 0.0005 NaN NaN NaN
PLCKG303.8+33.7 303.76 33.66 6.05 A3528S 0.05 68.17 0.0085 0.0014 NaN NaN NaN
PLCKG163.7+53.5 163.72 53.53 7.46 A0980 0.16 32.07 0.0030 0.0004 NaN NaN NaN
PLCKG318.1-29.6 318.13 -29.58 6.63 RXCJ1947.3-7623 0.22 25.55 0.0031 0.0005 NaN NaN NaN
PLCKG244.7+32.5 244.70 32.49 6.27 A0868 0.15 31.25 0.0029 0.0005 NaN NaN NaN
PLCKG284.5+52.4 284.46 52.44 7.27 RXCJ1206.2-0848 0.44 18.33 0.0029 0.0004 NaN NaN NaN
PLCKG260.0-63.4 260.03 -63.44 7.29 RXCJ0232.2-4420 0.28 23.09 0.0024 0.0004 NaN NaN NaN
PLCKG253.0-56.1 252.97 -56.05 6.79 A3112 0.08 65.98 0.0047 0.0007 NaN NaN NaN
PLCKG234.6+73.0 234.59 73.02 6.39 A1367 0.02 169.59 0.0146 0.0029 NaN NaN NaN
PLCKG278.6+39.2 278.61 39.17 7.57 A1300 0.31 23.38 0.0035 0.0005 NaN NaN NaN
PLCKG246.5-26.1 246.52 -26.06 6.52 A3376 0.05 77.30 0.0053 0.0010 NaN NaN NaN
PLCKG114.3+64.9 114.34 64.87 6.18 A1703 0.28 20.89 0.0020 0.0003 NaN NaN NaN
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Table A.3.The ESZ sample (continued)

Name GLON GLAT S/N ID z ΘX YPS X YERR
PS X Θ Y YERR

PLCKG80.4-33.2 80.38 -33.20 6.06 A2443 0.11 39.40 0.0039 0.0006 NaN NaN NaN
PLCKG249.9-39.9 249.88 -39.87 6.25 A3292 0.15 31.40 0.0018 0.0004 NaN NaN NaN
PLCKG182.6+55.8 182.64 55.82 6.81 A0963 0.21 27.40 0.0019 0.0004 NaN NaN NaN
PLCKG62.4-46.4 62.42 -46.41 6.33 A2440 0.09 47.33 0.0041 0.0007 NaN NaN NaN
PLCKG8.4-56.4 8.45 -56.36 6.39 A3854 0.15 33.94 0.0024 0.0005 NaN NaN NaN
PLCKG229.2-17.2 229.22 -17.25 6.18 RXCJ0616.3-2156 0.17 28.31 0.0031 0.0005 NaN NaN NaN
PLCKG341.0+35.1 340.96 35.12 6.61 ACO S0780 0.24 30.43 0.0030 0.0007 NaN NaN NaN
PLCKG218.9+35.5 218.86 35.51 6.87 A0750 0.18 31.52 0.0027 0.0005 NaN NaN NaN
PLCKG165.1+54.1 165.09 54.12 6.34 A0990 0.14 35.91 0.0027 0.0005 NaN NaN NaN
PLCKG161.4+26.2 161.44 26.23 6.63 A0576 0.04 88.79 0.0076 0.0012 NaN NaN NaN
PLCKG295.3+23.3 295.33 23.34 6.11 RXCJ1215.4-3900 0.12 36.31 0.0042 0.0008 NaN NaN NaN
PLCKG280.2+47.8 280.20 47.82 7.06 A1391 0.16 30.98 0.0042 0.0006 NaN NaN NaN
PLCKG0.4-41.8 0.44 -41.84 6.55 A3739 0.17 31.54 0.0025 0.0005 NaN NaN NaN
PLCKG195.6+44.1 195.62 44.05 6.88 A0781 0.30 19.18 0.0017 0.0003 NaN NaN NaN
PLCKG241.9+51.5 241.86 51.53 6.96 A1066 0.07 48.70 0.0024 0.0007 NaN NaN NaN
PLCKG81.0-50.9 81.00 -50.91 6.76 A2552 0.30 22.98 0.0026 0.0005 NaN NaN NaN
PLCKG304.5+32.4 304.50 32.44 6.86 A3532 0.06 69.91 0.0068 0.0015 NaN NaN NaN
PLCKG306.8+58.6 306.80 58.61 6.81 A1651 0.08 59.16 0.0077 0.0012 NaN NaN NaN
PLCKG172.9+65.3 172.89 65.32 6.30 A1190 0.08 47.15 0.0030 0.0006 NaN NaN NaN
PLCKG99.0+24.9 98.95 24.86 6.49 A2312 0.09 41.02 0.0022 0.0004 NaN NaN NaN
PLCKG247.2-23.3 247.17 -23.33 6.19 ACO S0579 0.15 31.86 0.0019 0.0004 NaN NaN NaN
PLCKG176.3-35.1 176.28 -35.05 6.38 2A0335+096 0.03 126.35 0.0117 0.0025 NaN NaN NaN
PLCKG57.9+27.6 57.93 27.64 6.13 ZwCl 1742.1+3306 0.08 58.65 0.0037 0.0008 NaN NaN NaN
PLCKG275.2+43.9 275.22 43.92 6.29 A1285 0.11 43.45 0.0044 0.0008 NaN NaN NaN
PLCKG96.9+52.5 96.85 52.47 6.12 A1995 0.32 20.73 0.0015 0.0003 NaN NaN NaN
PLCKG72.8-18.7 72.80 -18.72 10.10 ZwCl2120.1+2256 0.14 NaN NaN NaN 37.22 0.0052 0.0010
PLCKG239.3-26.0 239.29 -26.00 8.64 MACS J0553.4-3342 0.41 NaN NaN NaN 17.22 0.0026 0.0006
PLCKG8.3-64.8 8.30 -64.76 8.47 AC114Northern 0.31 NaN NaN NaN 43.83 0.0048 0.0010
PLCKG94.0+27.4 94.02 27.43 6.92 H1821+643 0.30 NaN NaN NaN 40.25 0.0030 0.0014
PLCKG157.4+30.3 157.43 30.34 6.18 RXJ0748.7+5941 NaN NaN NaN NaN 22.43 0.0025 0.0014
PLCKG345.4-39.3 345.41 -39.34 7.10 ABELL3716S 0.04 NaN NaN NaN 118.59 0.0109 0.0032
PLCKG53.4-36.3 53.44 -36.27 6.88 MACS J2135.2-0102 0.32 NaN NaN NaN 8.07 0.0018 0.0003
PLCKG271.5-56.6 271.50 -56.56 6.71 ACO S0295 0.30 NaN NaN NaN 20.26 0.0025 0.0007
PLCKG86.0+26.7 86.00 26.71 6.55 A2302 0.18 NaN NaN NaN 56.62 0.0043 0.0019
PLCKG96.9+24.2 96.88 24.22 6.24 ZwCl1856.8+6616 NaN NaN NaN NaN 20.64 0.0015 0.0005
PLCKG164.6+46.4 164.61 46.39 6.06 ZwCl0934.8+5216 NaN NaN NaN NaN 16.50 0.0018 0.0006
PLCKG285.0-23.7 284.99 -23.71 11.48 null 0.44 19.50 0.0023 0.0002 NaN NaN NaN
PLCKG287.0+32.9 286.99 32.92 10.62 null 0.39 25.33 0.0061 0.0006 NaN NaN NaN
PLCKG171.9-40.7 171.95 -40.66 10.61 null 0.39 29.56 0.0062 0.0006 NaN NaN NaN
PLCKG271.2-31.0 271.20 -30.97 8.48 null 0.27 20.06 0.0020 0.0002 NaN NaN NaN
PLCKG262.7-40.9 262.71 -40.91 8.27 ACT-CLJ0438-5419 0.37 18.71 0.0021 0.0002 NaN NaN NaN
PLCKG308.3-20.2 308.32 -20.23 8.26 null 0.39 NaN NaN NaN 32.81 0.0049 0.0013
PLCKG277.8-51.7 277.75 -51.73 7.40 null 0.21 17.51 0.0027 0.0003 NaN NaN NaN
PLCKG286.6-31.3 286.59 -31.25 6.89 null 0.30 28.12 0.0026 0.0004 NaN NaN NaN
PLCKG292.5+22.0 292.52 21.99 6.88 null 0.35 25.66 0.0037 0.0006 NaN NaN NaN
PLCKG337.1-26.0 337.09 -25.97 6.59 null 0.48 NaN NaN NaN 31.56 0.0034 0.0008
PLCKG285.6-17.2 285.64 -17.25 6.35 null 0.12 17.68 0.0016 0.0003 NaN NaN NaN
PLCKG225.9-20.0 225.93 -20.00 8.07 null NaN NaN NaN NaN 28.21 0.0040 0.0011
PLCKG255.6-46.2 255.63 -46.17 8.46 null NaN NaN NaN NaN 31.23 0.0026 0.0006
PLCKG304.8-41.4 304.84 -41.42 7.58 null NaN NaN NaN NaN 21.68 0.0022 0.0006
PLCKG121.1+57.0 121.12 57.01 6.66 null NaN NaN NaN NaN 17.99 0.0016 0.0004
PLCKG283.2-22.9 283.16 -22.93 6.03 null NaN NaN NaN NaN 26.73 0.0018 0.0008
PLCKG139.6+24.2 139.60 24.19 7.21 null NaN NaN NaN NaN 24.52 0.0032 0.0013
PLCKG189.8-37.2 189.85 -37.24 6.71 null NaN NaN NaN NaN 62.50 0.0080 0.0021
PLCKG264.4+19.5 264.42 19.48 6.15 null NaN NaN NaN NaN 32.25 0.0028 0.0010
PLCKG115.7+17.5 115.72 17.53 6.78 null NaN NaN NaN NaN 17.48 0.0025 0.0008
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