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n the early 1960s Arno Penzias and

Robert Wilson, then at Bell Labs, noticed

a small discrepancy in their microwave
instruments that indicated an excess of radia-
tion coming in from space. Not content to
ignore it, they soon made one of the profound
discoveries of the twentieth century: they had
found the embers of the early universe. This
radiation, which is nearly constant in every
direction, in all seasons, and at all times of
day, is now called the Cosmic Microwave
Background (CMB) radiation, and is almost
universally accepted to be evidence of a hot
dense beginning to our universe. When
viewed in the light of Edwin Hubble’s discov-
ery some 30 years earlier of the redshifts of
galaxies, this microwave background was
interpreted as none other than the highly red-
shifted and cooled relic radiation from a very
hot infant universe, now seen at a black-body
temperature of around
3 K. (This corresponds to a black-

depicted schematically in Fig. 1. We can’t say
for sure how old the LSS is, or how far away;
only that the universe has stretched by a fac-
tor of approximately 1000 since that time.
(See Box 1: Redshifts Explained.)

For nearly three decades after its discovery,
the only variation found in the CMB was the
so called “dipole anisotropy,” which revealed
a slightly warmer temperature in the direction
of the Virgo supercluster and a slightly cooler
temperature in the opposite direction. (That is
approximately 11h Right Ascension, —7°
Declination on the Celestial Sphere.) This
bipolar temperature variation is thought to be
due to our motion relative to the CMB and is
well explained as a “Doppler shift.” Once this
motion was corrected for, the CMB remained
isotropic to one part in 104, at least as of 1980
(Fig. 2).

The question then arose: If this microwave
background is totally uniform, how can we

body radiation curve that peaks
near 200 GHz.)

The CMB photons are the old- P
est observable radiation, coming
to us from the time when matter
and radiation first separated,
when the universe was cool
enough to become transparent.
This epoch is sometimes referred
to as the Recombination Era, for
this was the first time the uni-
verse was cool enough for pro-
tons to capture an electron, and
form neutral hydrogen some
300,000 years after the Big Bang.
The Recombination Era is seen
now as if we are looking outward
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at the inner surface of a sphere
that surrounds us at a redshift (z)
of approximately 1000, and is
often referred to as the Last
Scattering Surface (LSS). This is

Fig. 1. Looking back in time from anywhere in the universe at the Last
Scattering Surface. LSS represents a small span of time during which the
universe cooled down below the ionization temperature of hydrogen, and
the first neutral hydrogen could form.
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account for the structures we
observe in the universe today?
Small variations in the CMB
would indicate temperature and
density variations in the infant
universe, which could have
formed the initial “seeds”
around which large scale struc-
ture could eventually form.
Throughout the 1980s, several
groups around the world used
balloon-borne and ground-
based microwave antennas,
radiometers, and bolometers to
search for this elusive structure.
Their measurements showed
that any structure in the CMB
was at or below the few parts in
103 level. The effect of these
measurements was to pressure
the theoretical understanding
toward more exotic explana-
tions such as inflation and cold
dark matter, since the structure,
not yet seen, was uncomfort-
ably small.

In 1992, data from the
Cosmic Background Explorer
(COBE) satellite, launched by
NASA in 1989, showed evi-
dence for minute temperature
variations (anisotropy) in the
CMB at a level of just one part in 10° at angu-
lar scales near 10° or higher (Fig. 3). (For ref-
erence, 10° is about the angle subtended by a
typical fist at arm’s length.) The smallest
anisotropy that COBE could measure was
about 7°, the limiting size of the beam. At
about the same time (even prior in some
cases), data from the South Pole and balloon-
borne experiments showed anisotropies at 1°
scales at a similar amplitude level.

As we will see, it is particularly important
to measure at angular scales smaller than 1°,
since this is the scale below which matter has
been in “causal” contact. By definition, two
points are in causal contact if there has been
enough time since the beginning of the uni-
verse for light to travel from one point to the
other. Above this size scale, there had not
been enough time for one region to influence
another. This is a critical scale and, not unex-
pectedly, the anisotropies show a marked tran-
sition at this angular scale.

Although COBE represented a major
breakthrough in our understanding of cosmol-

Fig. 2. Dipole anisotropy of the CMB at 53 GHz. Magenta color represents a
warming of about 3 millikelvins, and cyan an equal amount of cooling, relative
to the black-body background of 2.725 + 0.002 K. This apparent dipole
anisotropy is not a relic of the early universe, but a Lorentz contraction of the
CMB radiation field due to our net motion relative to the general expansion of
the universe (co-moving frame).

Fig. 3. COBE two-year map of temperature anisotropies in the CMB. The varia-
tion is about 30 microkelvins above or below the black-body background of
2.725 K. In this projection, the galaxy would be across the equator.

ogy, the anisotropies it mapped are at an angu-
lar scale that is larger than we can study with
optical astronomy for even the largest struc-
tures we can observe today, such as the Great
Wall? of galaxies discovered by Margaret
Geller and John Huchra of Harvard in the
early 1990s.

Still, questions such as: “What is the actu-
al density of the universe?”, “What fraction of
all the matter in the universe is ‘baryon-
ic?’”(i.e., composed of normal matter), and
“What is the correct value of the Hubble para-
meter?” (i.e., expansion rate of the universe)
remain unanswered. More accurate measure-
ments of the small-scale fluctuations in the
CMB should help us answer these and other
questions about the physical processes in the
very earliest stages of the universe, and which
have profound implications for our under-
standing of fundamental particles, forces, and
symmetries in nature.

Two satellites currently under construction,
one by NASA and the other by the European
Space Agency (ESA), which are scheduled for
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launch early in the next century, should help
us answer these questions. Called MAP and
Planck, respectively, these two satellites will
map the entire microwave sky at angular
scales of a few arc minutes to 180°, thereby
allowing us to specify the temperature fluctu-
ations that were present in the universe at the
recombination time. When the data are ana-
lyzed, we may be able to resolve many of
today’s unanswered questions in cosmology.
Most students do not attempt a sophisticat-
ed study of cosmology until graduate school,
yet cosmology offers one of the most intrigu-
ing applications of physics imaginable. In this
article we will describe a simplified method of
modeling CMB spectra® and maps whereby
undergraduates and advanced high-school stu-
dents can participate in this most exciting
branch of modern physics research. (For an
extensive list of mapping experiments and
their respective websites, see Ref. 4, page 35.)

Modeling Small-Scale Fluctuations in
the CMB

Even before the data arrive from MAP and
Planck, cosmologists are making computer
models of the spectrum of possible
anisotropies. Using the data we already have,
we can already place constraints on the vari-
ous cosmological parameters, such as the
expansion rate of the universe, density of mat-
ter, and whether the universe is open or
closed.

The Standard Cosmological Model, often
called the Big Bang theory, states that the uni-
verse began from an initially hot, dense state,
from which it is still expanding today. The
experimental pillars of this model are the
observed redshifts of galaxies, the cosmic
microwave background radiation, and the
measured abundances of hydrogen, deuteri-
um, and helium.> In addition, we observe that
the universe is homogeneous and isotropic at
sufficiently large scales.

One consequence of this model is the so-
called Hubble law, which predicts that the
velocity of a galaxy as seen from Earth is a
linear function of its distance: v(r) = Hyr.
Strictly speaking, this is an approximation,
and holds only for velocities much less than
the speed of light.

One important parameter in the context of
this model is €}, (“Omega naught”), the ratio
of the total density of all matter in the uni-
verse to the so-called critical density:

ptotal/pcritical = Q0 (1)

(See Box 2 for a definition of p_;..; and how
it is related to H.)

Universes with €, > 1 are said to be
closed, implying that there is sufficient matter
to cause the universe to eventually collapse
back on itself (“Big Crunch”). Universes with
), < 1 are said to be open, implying that the
universe will expand forever. Universes with
Q, = 1 are called flat, implying that the cur-
vature of space is zero when the total density
of all matter equals the critical density of the
universe. This is equivalent to saying that the
total kinetic energy of expansion exactly bal-
ances the gravitational potential energy of all
the matter in the universe, thus producing an
expansion rate that asymptotically approaches
zero. (This is strictly true only if we don’t
consider vacuum energy density.)

Within the Standard Cosmological Model,
there are basically two theories proposed to
describe the growth of perturbations in the
CMB, which lead to different expectations in
the spatial distribution of CMB anisotropies
and their spectra: random density fluctuations
and topological defects in space-time itself.

The Inflationary Model is based on a ran-
dom distribution of density perturbations in
the earliest moments of the universe. A very
rapid expansion known as inflation suddenly
stretched out the universe by a factor of 1020
or so. Inflation may have started somewhere
around 10733 of a second after the Big Bang,
and lasted perhaps 10733 of a second (no one
is really sure),® but it had the effect of smooth-
ing out the amplitudes of the original density
perturbations. This model provides one expla-
nation of why the original density perturba-
tions would have left such small-scale
anisotropies in the CMB.

During the first few minutes of the uni-
verse, all the primordial hydrogen and helium
nuclei were formed, but for the next 300,000
years the density and temperature were so
great that the universe was opaque to all forms
of electromagnetic radiation. This era is often
called the “tight coupling era” because
baryons and photons were tightly coupled by
electromagnetic interactions in a “photon-
baryon fluid” (PB fluid).

The remnants of the original density fluc-
tuations from the Big Bang provided the
mechanism for gravity-driven oscillations in
the PB fluid. Competition between local grav-
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itational collapse due to excess mass density,
and adiabatic expansion due to radiation pres-
sure caused oscillations in the PB fluid, which
in turn sent out acoustic waves that propagat-
ed at the local speed of sound.”

At recombination, some 300,000 years
after the Big Bang, matter and radiation essen-
tially decoupled from each other, but the den-
sity contrasts remained embedded in the
young universe. It is conjectured that a large
portion of the mass of the universe is locked
up in “dark matter,” so named because it is
only observed by its gravitational interactions
and not by any electromagnetic interactions.
Photons don’t scatter off dark matter as they
do off protons and electrons; hence any dark
matter formed early on would have been free
to collapse gravitationally at a much earlier
era.

After decoupling, there was much less
interaction between the photons and the now
neutral matter. The baryons collected in the
gravitational potential wells left by the dark
matter, later growing into the structures we
find today. The photons were free to propa-
gate on their own through the universe,
imprinted with the signature of the density
perturbations just prior to decoupling.

Recombination was not instantaneous, but
is thought to have taken place over a time
interval corresponding to a Az of ~100, or
roughly 10% of the redshift of the LSS itself.
This had the effect of damping out the small-
er wavelength (higher /- see below) peaks in
the spectrum.

Both the Inflationary and Topological
Defect models predict that in the earliest
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Fig. 4. Predicted CMB spectra for Standard (s), Open (0), and A cold

dark matter models, and for a String model.
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moments of the universe matter and radiation
existed in one state, and the four fundamental
forces we observe today were united into one.
Somewhere in the tiniest fraction of a second
after the Big Bang, the universe passed
through a succession of transitions in which
first the strong nuclear force differentiated,
then the weak nuclear force, and finally elec-
tromagnetism.

According to the Topological Defect
Models, these transitions broke the original
symmetry of the universe and left defects in
the fabric of spacetime itself, which could
have taken various forms, such as strings,
knots, domain walls, and other discontinu-
ities.8 These regions of discontinuity in space-
time became regions of varying gravitational
potential where matter later collected to form
the large-scale structures we find in the uni-
verse. The mathematics behind the Topo-
logical Defect Model is very complicated and
not well understood at this time.

The predicted spectrum of anisotropies for
each model should look radically different
from each other. The Inflationary Model pre-
dicts a CMB spectrum that resembles that of a
complex sound wave that damps out at high
frequencies. The Topological Defect Model
predicts a CMB spectrum that rises slowly to
one peak and slowly damps out. This contrast
is shown in Fig. 4; the spectrum labeled
“Strings” is based on the Topological Defect
Model, whereas the other three spectra are
based on Standard Inflationary Models in
which the cosmological parameters are var-
ied, as discussed below.

Understanding the Spectrum of
7 CMB Anisotropies in the
Standard Inflationary Model

The problem of predicting the
CMB spectrum from a chosen set of
- initial conditions for the perturbations
. involves solving the first-order gener-
al relativity field equations (which
may or may not include a cosmologi-
cal constant, A, see description
below) for the various components of
the cosmic fluid. These include dark
matter and neutrinos as well as pho-
tons and baryonic matter. These are
very complicated equations, but can
be viewed as generalizations of the
classical fluid dynamic equations,
which express the continuity of flow
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and the conservation of energy and momentum under the
influence of gravity.
The PB fluid is visualized more or less as a plasma of c 9

relativistic particles, in which the speed of sound is given ie., the fa'rther back you go in time, vy = —.
as Each little pocket of matter can be

thought of as behaving like a tiny harmonic oscillator. The

1 baryons contribute mass that causes the collapse, and the

Ve= —— (—) () photons contribute the resistance to collapse in each pock-
et of material. What results is something like a damped

where R is the radius of the universe at time 7. As R — 0,

Box 1. Redshifts Explained

Redshift refers to the apparent stretching of the wavelength of light, AA, due to the recession of
the source from us, relative to the wavelength we would observe for the same source in a labora-
tory on Earth, A. The redshift, z, is defined as follows:

Let A = wavelength observed for given source in a lab on Earth
Let A" = wavelength observed for same source, moving away from Earth

NoA_AA
A A

There are different sources of redshift: one is due to the actual velocity of the source relative to
Earth, one is due to the stretching of space itself, and another is a gravitational redshift.

Then z=

For galaxies close to us, the redshift gives a good approximation to the actual velocity of reces-
sion of the object, in cases where the stretching of the wavelength of light is much less than one
wavelength:

Mm
A
For example: the first emission line in the hydrogen spectrum (H-« line) has a wavelength of

approximately 656.3 nm. Suppose this line is observed to be shifted toward the red by 0.1%.
This gives a velocity of recession of the source of 0.001 c.

=z

o =<

The most distant quasars have redshifts close to 5. Using the simple definition above would give a
recession velocity of 5 ¢, which is prohibited by special relativity. For such objects, the relativistic
redshift formula must be used, from which the recession velocity can be calculated:

v (z+ 1?1
¢ (+Dr+1

Thus, a quasar with a redshift of 4.9 has a recession velocity of approximately 0.944 c.

If the recession velocities are due to the expansion of space, then we can use Hubble’s law (see
definition in Box 2) to calculate the distance to any object, once we have calculated its velocity
(for v/c << 1) from its measured redshift. The problem with this method is that independent mea-
surements place H, between about 50 and 80 km/s/Mpc. Assuming no gravitational redshift and
no deviation from the “Hubble flow,” the only true measurement we can get from an object’s red-
shift is the factor by which space has stretched since the time the light left the object. This is the
cosmological redshift.

Let R, = the distance to a source now
Let R = our equivalent distance to the source when the light left it

R
Then, z = —0
R

Thus, a redshift for the LSS of 1000 tells us that the universe has expanded by a factor of 1000
since the time the CMB photons we see now decoupled from matter.
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harmonic oscillator in which density (instead of displace-
ment) is the variable, the expansion rate of the universe
(Hy) provides the damping term, and gravity provides the
driving force for each oscillating pocket of PB fluid.?
When the equations are solved over a range of spatial
scales (or wave numbers), the solution takes the form of a

series of sines and cosines (Fourier series), which lead to
a particular spectrum of density (and hence temperature)
fluctuations.

The elegance of this model is that the details of the
CMB spectrum depend heavily on the gravity-driven
acoustic oscillations. The amplitudes of the peaks depend

Box 2. Estimating p, and H,

The critical density of the universe (taken to be homogeneous at sufficiently large scales) is defined
as the density necessary to make the gravitational potential energy of the universe just balance the
kinetic energy of expansion. We define the gravitational potential of any test mass at infinity, rela-
tive to a large mass, as 0. In our Flat Universe model, the kinetic energy of expansion of this test
mass also approaches 0 as it approaches infinity. We define the initial kinetic energy of expansion
and initial gravitational potential energy at some initial radius r to be K and U, respectively.

1 ) GmM
Ky= Emv0 and Uy=- "

where G is the universal gravitational constant, which has the value 6.67 X 10711 Nm?2 kg‘2 in SI
units.

By conservation of energy,

KO+U0=KOC+UOO=0 . 1 ) GmM
which leads to Emvo = .
r

Isolating v, we can calculate the escape velocity necessary for mass m to escape the gravitational
pull of M and just barely make it to “infinity,” asymptotically approaching zero kinetic energy:

2GM
VO = ’

Now, consider a sufficiently large, spherical region of the universe in which the density is p. The
mass M of this region is

4
=§'n'r3p

Substituting this expression into our equation for escape velocity, we get

87Gp

Now recall Hubble’s law, which relates the recession velocity of any galaxy to its distance from
us,
w(r) = Hyr

where H, is the Hubble parameter, in units of km/s/Mpc. Whether v (r) is equal to the escape
velocity necessary for the universe to escape its own gravitational influence (so to speak),
depends on whether the average density, p, is equal to the critical density, p_, necessary to balance
the expansion at some time in the future. To estimate the critical density, we equate v(r) and v,

giving us
[87G p r?
v(r) = HOr = i:;pC_

which, after a bit of algebraic massaging, leads to an expression for the critical density of the uni-
verse in terms of H, and the universal gravitational constant, G:

2
_ 3H%,
8mG
If we take the current conservative value of Hjy = 65 km/s/Mpc, after converting units we come
up with p, = 8 x 10739 g/cm3, which turns out to be at least an order of magnitude larger than the
density estimated from all observable matter!

Pe
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Fig. 5. Spectra for three cosmological models, generated by CMBFAST.3
H, = 50 km/s/Mpc; order number is plotted along horizontal axis.
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Fig. 6. Same spectra as in Fig. 5, except H,, is set at 75 km/s/Mpc.
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Fig. 10. Data points thus far from COBE, ground-based, and balloon-
borne experiments. Taken from Max Tegmark'® with permission. For a
complete explanation and listing of experimental results, see Ref. 7.

on the ratio of baryons (inertia) to photons (restoring
force), as well as the percent of dark matter. The baryon
density (£} itself depends on the rate at which space is
stretched as the universe expands—the Hubble parameter,
H,. The interdependence of (), and H,, is often expressed
in the parameter (), 4%, where h = H/100. The initial con-
ditions of the universe determine the phase shift of the
peaks in the spectrum. Thus it should be possible to
extract a wealth of cosmic information from the spectrum
of CMB anisotropies.

All of the above description is a simplified version of
how the model predicts the spectrum of CMB anisotropies
we should measure, given a certain set of initial condi-
tions. The problem of experimentally deriving the CMB
spectrum from observations of microkelvin fluctuations in
the background temperature of the universe is a separate
issue! This problem is similar to trying to decipher the
sound signals from an orchestra playing random tunes
from a great distance away, when there is noise contami-
nation from nearby traffic and shouting children that you

Figs. 7, 8,9. Maps of
expected CMB anisotropies
for spectra shown in Fig. 5.
Values are in microkelvins
above or below zero. The
2.725-K black-body back-
ground temperature has
been subtracted out. Red
represents warmer-than-
average and blue cooler-
than-average regions on
LSS. Maps have no partic-
ular coordinate system;
fluctuations are purely sta-
tistical and do not corre-
late with any known struc-
tures.

Fig. 8. Open Model

Fig. 9. Flat Model with QA = 0.7
ot total density.
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must first interpret and remove. In measuring the CMB,
we have to remove the signal contamination that comes
from looking through our galaxy, intergalactic dust, stray
radiation, and instrument noise.

Let us digress for a moment to the case of a vibrating
guitar string, with a characteristic length, density, diame-
ter, and tension. If the string is plucked, a pleasant sound
will be produced, which is a combination of the normal
modes of vibration of the string. The spectrum of the
sound wave will tell you the relative power in each mode,
and the actual waveform can be approximated by adding a
series of sine waves with frequencies that are integral mul-
tiples of the fundamental (longest wavelength). The more
terms you include in the series, the more closely you will
approach the actual sound.

Now consider a circular drumhead with a characteristic
diameter, thickness, density, and tension. If the drumhead
is struck, it will vibrate in a characteristic manner that is a
combination of its normal modes of vibration. Because it
is a two-dimensional surface, however, its normal modes
include vibrations with nodes that form concentric circles
as well as nodes that are radii. The superposition of these
two-dimensional normal modes produces the sound you
hear, which can be modeled with a series of time-varying
Bessel functions in radius and azimuthal angle.

Finally, imagine a giant circular balloon filled with
water, supported by strings that allow it to vibrate freely if
tapped, but not roll away. You tap the balloon in several
places, which causes pressure waves to travel through the
balloon and also around its surface. After a few seconds of
oscillation, the entire balloon is suddenly frozen, so that
the lumps in its surface at that instant are frozen into it for-
ever. The variations in the surface height of the spherical
balloon can be described with a spherical harmonic series
as a function of two angles, one measured between “equa-
tor and poles” so to speak (“small circles”), and the other
around the equator with respect to some arbitrary refer-
ence (‘“‘great circles”).

Since we are really looking out toward the LSS at the
inside surface of an imaginary sphere, the spectrum of
anisotropies is best described with a spherical harmonic
expansion in temperature:

T(0.9) = 2a;,Y/" (0.¢) 3

where T is the measured sky temperature, in microkelvins,
as a function of two orthogonal angles, 6 and ¢, and the
Y/" are the spherical harmonics. (The ¥;" are products of
a function of cos (6) and [cos (m¢) + i sin (m¢)]. For a full
treatment, see any good book on partial differential equa-
tions!

The number of nodes between equator and poles is rep-
resented by /, while m represents the number of longitudi-
nal nodes; m varies from -/ to + /, with / = 0, and for each

[ the sum is taken over all possible m’s. The g, are the
expansion coefficients, which are like the individual
amplitudes in a Fourier series.

We define a new quantity, C;, which is the squared
average of the expansion coefficients for any /, averaged
over all possible m’s:

C =(la,I» 4)

The angular power spectrum, defined as [ (I + 1)C}, gives
the relative strength of the temperature variation we can
measure for any order /, averaged over all possible m’s for
that value of /.

The [ = 0 term is often called the monopole term, and
corresponds to the surface of a completely smooth and
featureless sphere. In terms of the CMB, the monopole
term is the 2.725 * 0.002-K microwave background,
which is uniform out to a few millikelvin.

The I = 1 term is called the dipole, and corresponds to a
sphere with one part more positive than average and the
other more negative. In terms of the CMB, “positive”
means warmer than background, and “negative” means
cooler. The dipole variation of the CMB is approximately
* 0.003 K, relative to the monopole term. (Technically
speaking, the origin of the dipole anisotropy in the CMB is
not cosmological, but is an effect of our motion relative to
the CMB, which causes the sky to appear warmer in the
direction of our motion, and cooler in the opposite direc-
tion.)

The / = 2 term is the quadrupole and represents a
sphere with two warmer regions around the equator and a
cooler region at the north and south poles. The quadrupole
term of the CMB has an amplitude that is two orders of
magnitude smaller than the dipole fluctuation. A qualita-
tive representation of the first three terms of the spherical
harmonics for the CMB are shown on the cover.

The angular size A6 of a temperature fluctuation on the
sky depends on the order number /, approximately as fol-
lows:

Af = —712 radians 5

Thus, COBE measured to [ ~ 20, or somewhat less than
10° of arc on the sky.

The important lesson in all this is that when we plot the
CMB power spectrum as a function of /, the distribution
and amplitude of the peaks in the spectrum depend heavi-
ly upon the values of the cosmological parameters such as
baryon density versus radiation density, H,,, whether or
not there was cold (nonrelativistic) or hot (relativistic)
dark matter, and whether the universe was seeded by these
random density/temperature perturbations or by some
other, mechanism as yet poorly understood (see Fig. 4.)
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Hence the reasoning: if we can map the anisotropies
and measure the power spectrum of the CMB, we can
understand the cosmological parameters that constrain
the fundamental physics of the universe.

Predicting the Spectra for Inflationary
Scenarios

The cosmological parameters that we are seeking to
measure include:

H,), the Hubble parameter. This is assumed to be a con-
stant expansion rate per Megaparsec (1 Mpc = 3.26
million light years). Independent measurements place
H, somewhere between 50 and 80 km/s/Mpc.

QO, the ratio of the total density of the universe to the crit-
ical density.

), the ratio of the total density of baryonic (normal mat-
ter) to the critical density of the universe.

chm, the ratio of the density of cold dark matter to the
critical density of the universe. Cold dark matter
refers to nonluminous yet gravitationally interacting
matter, whether baryonic or exotic, that is nonrela-
tivistic.
thm, the ratio of the density of hot (i.e., relativistic) dark
matter to the critical density of the universe. Hot dark
matter could take the form of massive neutrinos, or
some other unknown particle.

1, the ratio of the vacuum energy density to the critical
density of the universe. A (lambda) is Einstein’s cos-
mological constant, some unknown vacuum energy
density that contributes to the expansion of the uni-
verse. Recent independent measurements of high-z
Type Ia supernovae and massive galaxy clusters
appear to support a non-zero value of A1 If true, this
would have profound consequences on cosmology
and in particular on the CMB anisotropy.

Another important parameter that must be considered
is the fraction of neutral helium that existed at the
Recombination Era. Helium atoms form at a higher tem-
perature than hydrogen atoms, thus a certain portion of all
baryons became locked up in neutral helium before the
formation of neutral hydrogen. The fraction of neutral
helium in the primordial universe is thought to have had a
value between 0.23 and 0.26 of the total baryon density.

One of the codes for modeling CMB anisotropies is
called CMBFAST.? This user-friendly Fortran code
accepts input for any combination of cosmological para-
meters, and returns the power spectrum as a function of
order number, in plain text format. This output can then be
used with any standard graphing program (that will accept
a large number of data points), and the resulting spectrum
can be examined for each input model.

One of our group (Natoli) has developed a code that
will take the output of CMBFAST and generate tempera-
ture anisotropy maps at varying scales. Using these two
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routines, students can see the expected effects on the CMB
itself for the various cosmological parameters (such as H,,
and (),) at a particular length scale. Since each peak in the
spectrum falls at a particular / value, and each [ corre-
sponds to a particular angular scale on the sky, by choos-
ing the appropriate mapping scale students can see the
changes in the predicted CMB temperature fluctuations
for different input parameters. The first peak at [ ~ 200
corresponds to a length scale on the sky of approximately
one degree. This should be discernable on a full sky map
of 1024 pixels in width—the width of most PC monitors.
The flat universe models run in a few minutes on a rea-
sonably fast (120 MHz or faster) Pentium PC, with at least
16 Meg of RAM (although the open models require a
main frame at this time). The same models take an hour or
more to run on a 486-33. Thus it is possible for advanced
high-school students to model CMB anisotropies in the
same manner as is done by professional cosmologists.

The unmodifiable executable file of CMBFAST will be
available early in 1999 from our website, as well as the
code to take the output spectrum and map the anisotropies,
along with instructions for inputting the parameters.
Interested readers can download these files from
www.deepspace.ucsb.edu, under Interactive Astrophysics,
CMB models. Students will be able to input their combi-
nations of cosmological parameters, take the output from
CMBFAST, run it through a graphing program, and plot
the resulting spectrum of anisotropies.

Figure 5 shows the expected spectra for three models:
a standard model (blue curve), with Q= 0.05, Q ;.
0.95, and (2, = 0, giving (), = 1 for a Flat Universe, an
Open model (red curve), with ), =0.05, Q ;. = 0.30, and
Q, =0, giving a total density of 0.35 of the critical densi-
ty, and a Flat Universe with a positive vacuum energy den-
sity (green curve), in which €0 = 0.05, Q. = 0.25, and
Q, = 0.7, as suggested by recent measurements of high-
redshift supernovae. H is 50 km/s/Mpc. The order num-
ber, [, is plotted on the horizontal axis, and the I(I + 1)C
are plotted on the vertical axis in units of ,uKi
(microkelvin squared).

For comparison, in Fig. 6 we show the effect of using
H, = 75 km/s/Mpc, while keeping all the other model
parameters the same. You can see that changing the value
of H, has more consequence for temperature anisotropies
at length scales much less than 1° (higher order than / =
200).

The maps of expected temperature fluctuations in
microkelvins, relative to the accepted value of the average
temperature of the universe (“monopole term”) of 2.725 K
for the spectra are shown in Figs. 7, 8, and 9 for the
Standard, Open, and “Lambda” models, respectively. The
color scheme is such that red represents regions that are
warmer than average, and blue represents slightly cooler
regions. The location of the first Doppler peak in the spec-
trum has a noticeable effect on the scale of the tempera-
ture fluctuations that can be discerned by comparing the

maps for the Standard and Open models. In the Standard
model, the first peak occurs at / = 200, and the anisotropy
scale is at 1.0°. In the Open model, the first peak occurs at
[ = 500, and you can see the clustering of anisotropies at
a finer scale.

Figure 10 shows the (normalized) angular power spec-
trum in microkelvins, derived from experimental CMB
measurements made to date, plotted according to the / val-
ues. The clustering of power around / = 200 or so is quite
suggestive, although the uncertainties in the higher modes
do not yet allow us to accurately extract the cosmological
parameters we are looking for.

We are finding these modeling exercises useful with
undergraduate astrophysics students at UCSB. For high-
school seniors who have taken the calculus-based
advanced placement physics course, the study of cosmol-
ogy offers a unique and fascinating motivation to come to
school in those last few weeks after the AP exam, and
before graduation! This work is part of the Remote Access
Astrophysics Project (RAAP) at UCSB. Now in its tenth
year, RAAP is dedicated to encouraging the study of
astronomy and astrophysics at the secondary school and
college levels. The curricula and program for this paper
will be available on our website in January 1999, from
www.deepspace.ucsb.edu.
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