Structure in the COBE' DMR First Year Maps

by

G. F. Smoot?, C. L. Bennett®, A. Kogut*, E. L. Wright®, J. Aymon? N. W. Boggess®,
E. S. Cheng®, G. De Amici?, S. Gulkis®, M. G. Hauser®, G. Hinshaw?, C. Lineweaver?,
K. Loewenstein”, P. D. Jackson”, M. Janssen®, E. Kaita’, T. Kelsall®, P. Keegstra’, P. Lubin®,
J. Mather®, S. S. Meyer?, S. H. Moseley®, T. Murdock!®, L. Rokke?, R. F. Silverberg?,
L. Tenorio?, R. Weiss?, D. T. Wilkinson!!

submitted to the Astrophysical Journal Letters on April 21, 1992

Draft printed March 24, 1997

Received: April 22, 1992 Accepted: June xx, 1992

!The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC)
is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE).
Scientific guidance is provided by the COBE Science Working Group. GSFC is also responsible for the
development of the analysis software and for the production of the mission data sets.

2 LBL, SSL, & CfPA, Bldg 50-351, University of California, Berkeley CA 94720

3 NASA Goddard Space Flight Center, Code 685, Greenbelt MD 20771

4 University Space Research Assoc., Code 685.9, NASA/GSFC, Greenbelt MD 20771
> UCLA Astronomy Department, Los Angeles CA 90024-1562

6 Jet Propulsion Laboratory, Pasadena CA 91109

" Hughes STX Corporation, 4400 Forbes Blvd., Lanham MD 20706

8 UCSB Physics Department, Santa Barbara CA 93106

9 MIT Department of Physics, Room 20F-001, Cambridge MA 02139

10 General Research Corporation, 5 Cherry Hill Dr., Danvers MA 01923

11 Princeton University Department of Physics, Princeton NJ 08540



ABSTRACT

We have analyzed the first year of data from the Differential Microwave Radiometers
(DMR) on the Cosmic Background Explorer (COBE). The data show the dipole anisotropy,
Galactic emission, and instrument noise, and detect statistically significant (> 7o) structure
that is well-described as scale-invariant fluctuations with a Gaussian distribution. The major
portion of the observed structure cannot be attributed to known systematic errors in the
instrument, artifacts generated in the data processing or known Galactic emission. The
structure is consistent with a thermal spectrum at 31, 53, and 90 GHz as expected for

cosmic microwave background anisotropy.

The rms sky variation, smoothed to a total 10° FWHM Gaussian, is 30 £5 K for
Galactic latitude [b] > 20° data with the dipole anisotropy removed. The rms cosmic
quadrupole amplitude is 13 + 4 pK. The angular auto-correlation of the signal in each
radiometer channel and cross-correlation between channels are consistent and give an angular
power-law spectrum with index n = 1.1+ 0.5, and an rms-quadrupole-normalized amplitude
of 16 £4 uK (AT/T =~ 6 x 107%). These features are in accord with the Harrison-Zel’dovich
(scale-invariant, n = 1) spectrum predicted by models of inflationary cosmology. The low
overall fluctuation amplitude is consistent with theoretical predictions of the minimal level

gravitational potential variations that would give rise to the observed present day structure.
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1 INTRODUCTION

The 2.73 K cosmic microwave background (CMB) is one of the most effective probes of
the early Universe. On large angular scales the CMB contains imprints of the primordial
gravitational potential fluctuations (Sachs & Wolfe 1967) thought to be the origin of large
scale structure in the Universe. The COBE DMR instrument, described by Smoot et al.
(1990), is designed to measure the large-angular-scale anisotropy of the CMB. The instrument
operates at three frequencies: 31.5, 53 and 90 GHz (wavelengths 9.5, 5.7, and 3.3 mm),
chosen to be near the minimum in Galactic emission and near the CMB maximum. There
are two nearly independent channels, A & B, at each frequency. The orbit and pointing of
COBE result in a complete survey of the sky every six months while shielding the DMR from
terrestial and solar radiation (Boggess et al. 1992). Smoot et al. (1991) present preliminary
results based on six months of data and Bennett et al. (1992a) describe the calibration
procedures. This paper describes results based upon the first year of DMR data. Companion
papers: Kogut et al. (1992) discuss the treatment of systematic errors, Bennett et al. (1992b)
discuss the separation of cosmic and Galactic signals, and Wright et al. (1992) compare these
data to other measurements and to models of structure formation through gravitational
instability. These new results are consistent with, and substantially more sensitive than,
the previously published large-angular-scale anisotropy measurements, in particular those
of Princeton (Fixsen et al. 1983), Berkeley (Lubin et al. 1985), Relikt (Klypin et al. 1987),
DMR preliminary results (Smoot et al. 1991), and Meyer et al. (1991).

2 DATA PROCESSING AND ANALYSIS

The DMR measures the difference in antenna temperature between regions of the sky
separated by 60° . A baseline is subtracted for each radiometer channel and the data are
converted from telemetry units to antenna temperature. We reject data taken when the
Earth is 1° below the Sun/Earth shield or higher (5.0% of data), when the Moon is within
25° of an antenna beam center (6.6% of data), when any datum deviates from the daily mean
by more than 5 standard deviations (<0.001% of data), or when the spacecraft telemetry
or attitude solution is of poor quality (1.5% of data). The remaining data are corrected
for emission from the Moon and Jupiter, the Doppler effect of the spacecraft velocity about
the Earth and the Earth motion about the solar system barycenter, and the instrument
susceptibility to the Earth’s magnetic field. A least-squares minimization is used to fit the
data to spherical harmonic expansions and to make sky maps with 6144 nearly equal area

pixels using a sparse matrix technique (Torres et al. 1989, Janssen & Gulkis 1992).
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We have searched the DMR time-ordered data and maps for evidence of systematic
artifacts (Kogut et al. 1992). The largest such effect is the instrument response to an external
magnetic field, which is modeled as a linear function of the Earth’s field and the radiometer
orientation. A least-squares minimization is used to fit simultaneously the sky temperature
distribution and the instrument magnetic response. The magnetic corrections are on the
scale of 10 to 100 pK in the time-ordered data. Residual errors in the channel maps, after

correction, are typically 2uK and never more than 8.5uK.

Data binned by the position of the Earth relative to the spacecraft show no evidence
for Farth emission at the noise limit (47 pK at 95% CL). The estimated Earth emission in
the maps is less than 2uK. The time-ordered data with antenna beam centers more than
25° away from the Moon is corrected to an estimated accuracy of 10% (4 pK). The estimated

residual effect on the maps is less than 1uK.

Kogut et al. lists upper limits for the effects of variations in calibration and instrument
baselines, solar and solar system emissions, RFI, and data analysis errors. The quadrature
sum of all systematic uncertainties in a typical channel map, after corrections, is < 8.5uK for
rms sky fluctuations, < 3uK for the quadrupole and higher-order moments, and < 30uK? for
the correlation function (all limits 95% CL). These limits represent a factor 20 improvement

over our previous upper limits (Smoot et al. 1991).

3 RESULTS

The DMR maps are dominated by two features: a dipole anisotropy and the emission from
the Galactic plane. The dipole anisotropy (AT/T ~ 107?) is seen consistently in all channels
with a thermodynamic temperature amplitude 3.36 £0.1 mK in the direction [ = 264.7+0.8,
b =48.2+0.5. Motion of an observer with respect to the CMB (a blackbody radiation field)
produces a dipole anisotropy. We assume that the entire observed dipole results from our
peculiar velocity and correct the maps for the resulting Doppler effect, including the ~ 1.3uK

kinematic quadrupole.

The corrected maps show no obvious features away from the Galactic plane. The 2.6°
pixel signal distribution roughly agrees with the expected instrument noise (&~ 150 pK). No
7° region varies from the mean by more than 210 yK (AT/T ~ 8 x 107%). Detection
of additional features, other than receiver noise and the Galaxy, requires careful statistical

analysis and/or averaging over larger angles.
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3.1 STRUCTURE IN THE MAPS

Figure 1 (color plates) shows the 31, 53, and 90 GHz maps as smoothed with a Gaussian of
7° FWHM, which when convolved with the approximate 7° FWHM antenna beam, results
in a 10° smoothing on the sky. The observed point-to-point variance of the maps is the

quadrature sum of the instrument noise and the intrinsic fluctuations on the sky:

2 2 2
Oobs = ODMR T OShy-

and the channel (A-B)/2
difference maps provide an estimate of o%,,,, (Table 1) yielding osz,(10° ) = 30 £ 5 K for
|b] > 20° .

The two channel (A+B)/2 sum maps provide an estimate of o2,

All six channels show a statistically significant quadrupole signal. A comparison of
the fitted quadrupoles between channels and frequencies, and between the first and second
six months of data shows the individual ); components typically differ from map to map by
~ 10 pK with comparable uncertainty. The y? for 5 degrees of freedom ranged from 1 to
11 in various comparisons, corresponding to confidence levels ranging from 97% to 5% for
agreement. Table 2 shows the frequency dependence of the quadrupole components. The
large scale Galactic emission away from the Galactic plane is predominantly quadrupolar.
In Galactic coordinates ()1 aligns very well and with opposite sign to a cosecant (b) signal.
Contamination by Galactic emission is evident from the systematic decrease of ()7 with
increasing Galactic latitude cut angle. ()4 is the quadrupole component next most aligned
with features of Galactic emission. Determination of the cosmic quadrupole is linked to its
separation from Galactic emission (Bennett et al. 1992b). The best estimated cosmic signal
has a rms-normalized amplitude @),.,s = 13+£4 pK. The quadrupole amplitude is more than
a hundred times smaller than the dipole, with AT/T a5 x 107°.

The correlation function, C(a) = < TiTy, >, which is the average product of
temperatures separated by angle «, provides further evidence of the structure. C(«) is
calculated for each map by rejecting all pixels with Galactic latitude |b] < 20° | removing the
mean, dipole, and quadrupole from the remaining pixels, multiplying all possible pixel pair
temperatures, and averaging the results into 2.6° bins. Sample cross correlation functions
shown in Figures 2 & 3 have a 2.6° binning angle, 2.6° map pixelization, a 1.3° smearing due
to the 1/2 second instrument sampling time, and 3° rms DMR beam profile. When combined
these produce an effective Gaussian smoothing with a 3.2° rms. The observed correlation
functions exhibit structure on all scales from the beam size (7° ) to the quadrupole (90° )
and differ significantly (> 7o) from the flat correlation function due to receiver noise alone,

e.g. the (A-B)/2 maps.
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3.2 GALACTIC EMISSION

The chosen observing frequencies give an optimal and large ratio between CMB and Galactic
emission. Nevertheless, at these sensitivities Galactic emission is a significant concern and
must be understood before one can make cosmological interpretations (Bennett et al. 1992b).

A summary of the Galactic emission contribution follows.

Galactic emission antenna temperature is dominated by three components:

—-2.1 1.5

synchrotron emission oc ¥~27°, free-free emission o< »~%1, and dust emission o v!-%, as shown

in Figure 1 of Bennett et al. (1992b). The detected signals expressed in thermodynamic

—0.34+1

temperature are nearly constant amplitude: 10° sky-rms o v and quadrupole and

—02#1 " The flat spectral index of our results, without correction

correlation function o« v
for Galactic emissions, is consistent with a cosmic origin and inconsistent with an origin
from a single Galactic component. While we can not rule out a correlated superposition
of dust, synchrotron, and free-free emission, it would require significantly different spatial
distributions at high Galactic latitudes than previously known. Bennett et al. (1992b) find

this unlikely.

The correlation function (Figure 2) and sky rms (Table 1) are independent of Galactic
latitude cut angle after excluding the Galactic plane region. The results are affected
significantly when the [b] < 10° region is included, but are stable for cuts |b] > 15° for
53 and 90 GHz. The 31.5 GHz data show measurable effects out to about |b] ~ 30° . Cross-
correlations for |b] > 20° of the 19 GHz map (Boughn et al. 1992) with the 53A4B map
and of the FIRAS dust map (Wright et al. 1991) with the 90A+B map indicate that scaling
of Galactic signals would account for roughly 10% of the structure in the maps. Removing
the estimated Galactic emission causes no significant change in our results for |b] > 20° | as

expected from the cross-correlation results.

Since Galactic emission is weak at high latitudes, for statistical analysis we construct
a map from the six DMR channels designed to compromise between significantly Reduced

Galactic (RG) emission and minimum noise.
RG map = —0.440 x 31GHz map + 1.030 x 53G Hz map + 0.564 x 90GH z map

The resultant map is in units of Planck brightness temperature and has residual free-free
and synchrotron emission well below the observed structure for |b] > 20° . The fitted dipole
amplitude and direction is essentially identical to the weighted average of all the channels.
The rms sky variation, quadrupole, and correlation functions for the “Reduced Galaxy”
map are consistent with those from the 53 and 90 GHz maps for the Galactic latitude cuts
|b] > 20° (Tables 1 and 2).
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4 DISCUSSION

The COBE DMR maps show structure with characteristic anisotropy of AT/T a6 x 107°.
The structure is larger and of a different character than all identified systematic errors.
A critical issue is whether the structure is due to Galactic or extragalactic emissions
or is in the cosmic microwave background. Although one cannot rule out a heretofore
undiscovered Galactic or extragalactic emission, the Galactic or discrete extragalactic origin
of the measured anisotropy would require an unlikely confluence of factors. It would require
the source of anisotropy to mimic a thermal spectrum and, if Galactic, not have the spatial
distribution associated with known components of the Galaxy. Discrete extragalactic sources
individually contribute less than 2uK in the DMR beam and the expected temperature
variations are less than 1uK (Franceschini et al. 1989). The most economical hypothesis is

to attribute the structure to the microwave background.

Interpreted as CMB anisotropy, these results test inflationary models of cosmology
(Guth 1981, Linde 1982, Albrecht & Steinhardt 1982) which predict a nearly scale-invariant
spectrum of density perturbations (Bardeen, Steinhardt, & Turner 1983, Guth & Pi 1982,
Hawking 1982, Starobinskii 1982) and also test gravitational instability models of structure
formation (e.g. Bond & Efstathiou 1987, Holtzman 1989). The measured correlation function
determines the parameters of the fluctuation power spectrum. A power law primordial
density fluctuation spectra of the form P(k) = Ak™ is equivalent to a CMB temperature
anisotropy spectrum for the rms difference in temperatures separated by angle § of the
approximate form AT, o 9(1=")/2  The scale invariant value n = 1 gives a CMB
temperature fluctuation spectrum that is approximately independent of the separation angle

for angles larger than the beam size. The correlation function is

Cla) = 30 ATAW (1) Pcos(a)).

>2

where a 3.2° rms Gaussian beam gives a weighting W(l) = exp[-1/2({({ 4+ 1)/17.8%)] and
1
AT = — |am|?
LT i o | @i |

are the rotationally-invariant rms multipole moments. The predicted mean amplitudes, as a

function of spectral index n, are given by (Bond & Efstathiou 1987):

U+ DT+ (n—=1)/2)T((9 —n)/2)
5 T+ (B—n)/2)T((3+n)/2)

< ATZQ >= (Qrms—PS)2

Q) rms—ps 1s the (s predicted by the measured higher order moments of the power spectrum

when a power law is assumed. The best fitted values correspond to n = 1.1 + 0.5 and
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Qrms—ps = 16 £4 pK. Forcing the spectral index ton = 1 gives Q,ns—ps = 16.7 £4 uK

and increases the x? from 79 to 81 for 68 degrees of freedom.

If the observed structures result from a power-law spectrum of primordial fluctuations
with a Gaussian distribution, the AT? in each horizon have a x? distribution of 2 + 1
degrees of freedom, giving a cosmic variance of 2 < AT? >? /(2] 4 1). Including the cosmic
variance results in best-fitted values n = 1.1570 ¢ and Q,ms—ps = 16.3 £ 4.6 uK with a y?
of 53. Figure 3 shows the cross-correlation of the 53 GHz and 90 GHz maps, along with the
predicted shape for the best fitted scale-invariant spectrum. Including cosmic variance, our

data are consistent with power law spectra in the range n = 14+0.6 and Q),,s_ps = 17£5uK.

The observed cosmic quadrupole (Q,ms = 13 +4uK) is slightly below the mean value
predicted by the higher-order moments (Q,s—ps = 16+4uK). This is a likely consequence of
cosmic variance: the mode of the y? distribution is lower than the mean. A quadrupole value
of 13uK or lower would be expected to occur 35% of the time. The observed quadrupole
has some uncertainty in its corrections for Galactic emissions, the Doppler shift, and its
particular systematic errors (e.g. a pointing error can modulate the dipole anisotropy into
a small quadrupole). The results above exclude the quadrupole from the fitting. Including
the quadrupole increases n and the x? and decreases @,,,_ps to typical values of n = 1.5
and Qms—ps = 14uK.

The measured parameters — the rms fluctuations on a 10° scale, og,(10° ), the rms
quadrupole amplitude, Q),,,s, and the correlation function and its derivatives: the spectral
index, n, and quadrupole-normalized power-law amplitude, (),,.,_ps — are consistent with
a Harrison-Zel’dovich (scale-invariant) spectrum of perturbations, which predicts Qrms =
(170 Qrms—ps and osp, (10° ) = (2.0 &£ 0.2)Q,pns_ps. The theoretical 68% CL errors take
into account the cosmic variance due to the statistical fluctuations in perturbations for our
observable portion of the Universe. The minimum @),,,s for models with an initial Harrison-
Zel’dovich perturbations, normalized to the local large-scale galaxy streaming velocities, is
predicted to be 12uK, independent of the Hubble constant and the nature of dark matter
(Gorski 1991, Schaefer 1991).

These observations are consistent with Inflationary Cosmology models. The natural
interpretation of the DMR signal is the observation of very large (presently >>100 Mpc)
structures in the Universe which are little changed from their primordial state (t << 1
sec). These structures are part of a power law spectrum of small amplitude gravitational
potential fluctuations which on smaller length scales are sources of the large scale structure
in the Universe as observed today. The accompanying paper Wright et al. 1992 interprets

the DMR data’s constraints on gravitational instability theories.



4 DISCUSSION 9

The COBE DMR instrument continues to operate well and has completed its second
year of observations. New data and continuing analysis continues are expected to improve our
sensitivity to structure in the maps. If this structure is CMB anisotropy and the spectrum
is scale-free, then several experiments are within a factor of two of detecting anisotropy and

a new branch of astronomy has commenced.

The COBE DMR results originate in the excellent work by the staff of the COBE
Project and the support of the Office of Space Sciences and Applications of NASA
Headquarters. We thank those engineers and others who helped design and build the DMR
instrument and operate the satellite as well as the data analysts who provided the attitude
and other spacecraft information, including A. Banday, V. Kumar, R. Kummerer, and J.
Santana.
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6 FIGURE CAPTIONS

FIGURE 1. Color Plates:

A) Maps and overlay for comparison with COBE DMR maps: Top is TRAS 100um
zodi-removed dust map. Middle is Galactic coordinate grid and source positions. Bottom is
the Haslam et al. 408 MHz sky survey.

B) COBE DMR (A+B)/2 maps at 31, 53, and 90 GHz The maps have been smoothed
with a 7° FWHM Gaussian, which when combined with the approximately 7°©° FWHM

Gaussian beam shape results in about a 10° smoothing on the sky.

C) COBE DMR (A-B)/2 maps at 31, 53, and 90 GHz. The maps are processed
identically as B). The sky signal is canceled by the subtraction but the average instrument

noise remains the same.

FIGURE 2. Correlation Functions, C(«), at various Galactic latitude cuts for the 53 GHz
map with mean, dipole, and quadrupole removed, demonstrating near independence of
Galactic latitude cuts beyond |b] > 20° .

FIGURE 3. Cross-correlation of 53 GHz with 90 GHz for |b| > 20° plus the correlation
function for a scale-invariant spectrum with an expected quadrupole amplitude of 15.4 pK:
the gray band indicates 68% C.L. cosmic variations. Top is for the sum maps and bottom
is for the difference maps. The cross and autocorrelations for the various combinations of

maps all have consistent values.
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Table 1: Map RMS® at 10° smoothing for various Galactic cuts |b] > ° in pK

vo|]b] > a° Tobs ODMR | Osiy(10°)
GHz (A+B)/2 | (A-B)/2

31 10 133 94 95%¢
31 20 101 96 331,
31 30 97 95 2013,
31 40 101 96 30112
53 10 55 36 41715
53 20 46 35 3073
53 30 47 36 3013
53 40 47 36 3013
90 10 69 59 3518
90 20 65 61 2277
90 30 67 60 29+7
90 40 67 59 3117
RG 10 67 59 3147
RG 20 65 59 2777,
RG 30 67 61 2757,
RG 40 68 62 2877,

@ Uncertainties are 68% CL and include systematic effects.



6 FIGURE CAPTIONS

Table 2: Quadrupole Thermodynamic Amplitude in pK*

v bcut(o) Qrms Ql QQ QS Q4 Q5

31 10 66 £ 8 |[-141 £ 16 |27+ 12| -4 £12 |21 £ 14 |12 £ 14
31 20 269 | 41 +£20 |10£12| -6+ 11 |23 £17 |19 £ 19
31 30 2013 | -30£25 | 34+£12 | 4+£13 |40£25| 4 £ 24
53 10 19 &£ 3 -35 £ 6 19 £ 5 8+ 4 1+6 8+5H
53 20 11+ 3 9+7 14 +£5 8+5H 10 £ 7 3+£7
53 30 11 +£4 3+£6 12+ 6 8+5H 4+£8 | 3£10
90 10 17+ 4 25 £ 9 16 +£6 | 16 £5 9+6 6+8
90 20 14 £ 4 5+ 8 124+6 | 16 £5 | 16 £ 9 3+£7
90 30 15+ 5 13 £ 10 11£6 | 185 | 17T£14| 44+£9
RG 10 13 £ 4 11 +9 168 | 15£9 | 249 448
RG 20 13 £+£5 11 £ 10 16+£8 |16 10 810 | -3£9
RG 30 15+ 6 18 £ 13 164+£9 |I8£12| 6+12 | 3£ 14

“ Uncertainties are 68% CI. and include correction for systematic effects.

The @; are the peak values for each component of the quadrupole, Q(/,b).
Q(1,b) = Q1(3sin?b — 1)/2 + (Qasin2bcosl + Qzsin2bsinl + Qqcos*bcos2] + Qscos?bsin2l

frs = 5501+ Q3+ Q3+ Q1+ Q)
The (); are corrected for the Doppler effect which is aligned with the dipole and have

amplitudes of about 2uK.
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