Chapter 12
Oscillations






@ The object at the free end of
the spring is in equilibrium
when the spring is neither
stretched nor compressed.
We call this point x = 0.

@ When the spring is
stretched, the object is at
x > 0. The spring force
pulls the object back
toward equilibrium (F, < 0).

@ When the spring is
compressed, the object is at
x < 0. The spring force
pushes the object back
toward equilibrium (F, > 0).

x=0

which way the object is displaced from equilibrium, the spring
force always acts to return the object to equilibrium.

The force exerted by the spring is a restoring force: No matter



Period T of an oscillation
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What causes periodic motion?

(a)

- |f a body attached to a
spring is displaced from i i i 1
Its equilibrium position,
the spring exerts a “"é $
restoring force on It, .‘ |
which tends to restore the ®)
object to the equilibrium T e
position. This force
causes oscillation of the AN
system, or periodic |

- - to the left from the compressed spring
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Illustrates the restoring

force F,.




(i)

@ Stretch the spring and release

the block from rest at x = +A.

@ The restoring force of the
spring makes the block speed

up.

@ The block is at maximum
speed as it passes through
the equilibrium position.

The block overshoots x = 0;
the restoring force then
makes it slow down.

@The block comes to rest
momentarily at x = -A.

The restoring force again
accelerates the block toward
the equilibrium position.

@The block again passes
through the equilibrium
position at maximum speed.

The block overshoots x = 0
again; the restoring force
5 again makes it slow down.

@The block is again at rest at

x = +A; the cycle now starts

| F i over.



Characteristics of periodic motion

The amplitude, A, is the maximum magnitude of displacement
from equilibrium.

The period, T, is the time for one cycle.
The frequency, f, is the number of cycles per unit time.
The angular frequency, o, is 27 times the frequency: o = 2af.

The frequency and period are reciprocals of each other:
f=1Tand T = 1/f.



Simple harmonic motion (SHM)
Simple Harmonic Oscillator (SHO)

When the restoring force is directly proportional to the displacement from
equilibrium, the resulting motion is called simple harmonic motion (SHM).

An ideal spring obeys Hooke’s law, so the restoring force is F, = —kx, which

results in simple harmonic motion.

Restoring force F,

x<0
Fo>0
Displacement x
O
x>0
F, <0

R

The restoring force exerted by an idealized
spring is directly proportional to the
displacement (Hooke’s law, F, = —kx):
the graph of F versus x is a straight line.

Ideal case: The restoring force obeys Hooke’s

law (F, = —kx), so the graph of F, versus x is a
straight line.

Restoring force F
¥
N
\\ g,

M\ “Typical real case: The
restoring force deviates
from Hooke’s law ...

0‘“
0] % Displacement x
: R
..but F, = —kx canbe a Y

good approximation to the force ™
if the displacement x is sufficiently small.
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projection

 Simple harmonic motion is the projection of uniform
circular motion onto a diameter

(a) Apparatus for creating the reference circle

[lluminated
vertical screen

While the ball Q

on the turntable
moves in uniform
circular motion,

its shadow P moves
back and forth on
the screen in simple

harmonic motion.
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(b) An abstract representation of the motion in (a)

Ball moves in uniform

circular motion.
y

S Shadow moves
Frazs,

back and forth on
N\ .x-axis in SHM.
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Characteristics of SHM
 For a body vibrating by an ideal spring:

=gy f=f2=L| T=}=Zr=2:1

(a) F=60N
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(b) m = 0.50 kg
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Displacement as a function of time in SHM

» The displacement as a
function of time for SHM Yor

with phase angle ¢ is Fmax = lﬁ Ef N\ /\ i
X = Acos(at + ¢) 0 A N A i

« Changing m, A, or k changes

max
the graph of x versus t, as
(a) Increasing m; same A and k (b) Increasing k; same A and m (¢) Increasing A; same k and m
Mass m increases from curve Force constant k increases from Amplitude A increases from curve
[ to 2 to 3. Increasing m alone . curve | to 2 to 3. Increasing k alone 1 to 2 to 3. Changing A alone has
X increases the period. "+ decreases the period. X no effect on the period.
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Displacement, velocity, and acceleration

« The graphs below show X, v,, and a, for ¢ = /3.

° The graph beIOW (a) Displacement x as a function of time #
shows the effect of . k x= /,% (@i + ¢)
I R I/\ Vi p
different phase angles. ‘AW VY
<—T—>

These three curves show SHM with
the same period 7" and amplitude A
but with different phase angles ¢.

(b) Velocity v, as a function of time ¢

The v -t graph is shifted by

IL\LK from the x-7 graph.

(c) Acceleration a, as a function of time ¢

a, a,= —w?A cos (wt + )

T 2T
The a,-f graph is shlllul by 7 L}LIL, from the
v -t graph and lw — cycle f 10m the x-t graph.



Behavior of v, and a, during one cycle

- Figure shows how v, I
and a, vary during =g el
one cycle. =

> % .
[
a, =0
I_I# U,\f = Umux A
a,




SHO - mass and amplitude

An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude
of oscillation is doubled, how does this affect the oscillation period T and the object’s
maximum speed v, _.7?

A. Tand v, both double.

B. Tremains the same and v, doubles.
C. Tand v, both remain the same.

D. T doubles and v, _, remains the same.

E. T remains the same and v, _, increases by a factor of



SHO — mass and amplitude

An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude
of oscillation is doubled, how does this affect the oscillation period T and the object’s

maximum speed v, _.7?

A. Tand v, both double.
J B. T remains the same and v, doubles.
C. Tand v, both remain the same.

D. T doubles and v, _, remains the same.

E. T remains the same and v, _, increases by a factor of
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xmax = A | ‘
This is an x-t graph for an A _ /\ L,

object in simple harmonic

\VEAVEAY
motion. o — —A | - _ -

At which of the following times does the object have the most negative velocity v,?

A.t=T/4
B.t=T/2
C.t=3T/4
D.t=T

E. Two of the above are tied for most negative velocity



X 1 1
2T 5T

xmax = A | ‘
This is an x-t graph for an A _ /\ L,

object in simple harmonic
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motion. o — —A | - _ -

At which of the following times does the object have the most negative velocity v,?

JA.t=T/4

B.t=T/2

C.t=3T/4
D.t=T

E. Two of the above are tied for most negative velocity



Energy in SHM

« The total mechanical energy E = K + U is conserved in SHM:

E=1/2mv2+ 1/2 kx? = 1/2 kA2 = 1/2 MV, . avimum’ = CONStant

E is all potential E is partly potential, E is all kinetic
energy. partly kinetic energy.
energy.

x " 9max
h
v, =0

E is partly potential,

partly kinetic
energy.

E is all potential
energy.



Energy diagrams for SHM

(a) The potential energy U and total mechanical ~ (b) The same graph as in (@), showing

energy E for a body in SHM as a function of kinetic energy K as well
displacement x At x = %A the energy 1s all potential; the kinetic

; : energy is zero.
The total mechanical energy E is constant.

% Energy

At x = 0 the energy is all kinetic;
the potential energy is zero.

v} Energy| ¢
N gy¢E=K+U/L.~'
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At these points the energy is half
kinetic and half potential.



Vertical SHM — Mass and Spring
Gravity does NOT matter here

- If a body oscillates vertically from a spring, the
restoring force has magnitude kx. Therefore the

vertical motion i1s SHM.
 For a pendulum Gravity DOES matter.



Angular SHM - old mechanical watch

 Acoil spring exerts a restoring torque z, = —x6, where x is called the
torsion constant of the spring.

» The result is angular simple harmonic motion.

Balance wheel Spring

The spring torque 7, opposes
the angular displacement 6.



Vibrations of molecules
Intermolular forces

 Figure shows two atoms having centers a distance r apart, with
the equilibrium pointat r = R,,.

If they are displaced a small distance x from equilibrium, the

restoring force is F, = (72U /R,?)X, so k = 72U,/R,* and the
motion is SHM.

(@) Two-atom system

Van der Waal like forces.

(b) Potential energy U of the two-atom system as a

function of r

Distance between

atom centers

-
y
/
\ \T#
Atoms
F. = the force \‘\k:l'lcd

by the left-hand atom
on the right-hand atom

20,

— T
U,

/.
2U,

U

u(r) Pdldb()ld\ Near equilibrium, U can
- . be approximated by a
parabola.
I | |

T

\ A "(),-".‘

The equilibrium point is at r = R,
(where U is minimum).

() The force F, as a function of r

10U,/R,

5Uy/R,

)

~5Uy/R, |

F,

F.(r)

......... Near equilibrium, F,. can be
- approximated by a straight line.
_/\/ | | r

AN —T5R,

The equilibrium point is at r = R,
(where F'.is zero).




The simple pendulum

A simple pendulum consists of a point mass
(the bob) suspended by a massless,
unstretchable string.

If the pendulum swings with a small
amplitude @with the vertical, its motion is
simple harmonic.

0=, I = moment inertia = mL?2

1 =torque = L*m*g sin([1)

] = angular accel = d? [J/dt?

Eqg. motion d? [J/dt? = (g/L) sin([1) ~ (g/L)
Solution is [I(t) = Asin(Jt+J) - SHO

A —amp, [ - phase — both set by initial cond
1 = (g/L)Y2 angular freq (rad/s)

T=2x/01 = 2r (L/g)*?

Note T ~ LY2 and g1/2

(b) An idealized simple pendulum

gt String 1s
A% assumed to be
7\ massless and
o °

unstretchable.

Bob i1s modeled
as a point mass.

-
-~...x

The restoring force on the \\

bob is proportion:

not to €. However
6. sin 6 = #. so the motion 1S \

approximately sin

mg sin 0
\

ysin 6.\

l|.l( sin 6, Y

for small
\

. -
1ple har monic.



The physical pendulum

A physical pendulum is any
real pendulum that uses an
extended body instead of a
point-mass bob.

For small amplitudes, its
motion Is simple harmonic.

Same solution as simple
pendulum — e SHO.

1 =(g/L)Y2 angular freq
(rad/s)

T=2n/[1 = 21 (L/g)Y2

The body is free to rotate
around the z-axis.

Pivot

Irregularly
shaped
body

<

The gravitational force
acts on the body at
N its center of
gravity (cg).

mg sin G

mg cos 0
The restoring
torque on the body
is proportional to ~ mg

sin 6, not to . However, for small 6, sin 0 = 6,
so the motion is approximately simple harmonic.



Tyrannosaurus rex and the physical
pendulum

« We can model the leg of Tyrannosaurus rex as a physical pendulum.

« Unhappy T Rex — cannot use social media in class.




Damped oscillations

Real-world systems have
some dissipative forces that
decrease the amplitude.

The decrease in amplitude is
called damping and the
motion is called damped
oscillation.

Figure illustrates an oscillator
with a small amount of
damping.

The mechanical energy of a
damped oscillator decreases
continuously.

— ) = O.lv@ (weak damping force)
x =——b = 0.4/km (stronger damping force)

A ‘Y\\ Ae—012m)t

With stronger damping (larger b):
—ATF e The amplitude (shown by the dashed
curves) decreases more rapidly.
e The period T increases
(T, = period with zero damping).




Forced oscillations and resonance

A forced oscillation occurs if a driving force acts on an oscillator.

Resonance occurs if the frequency of the driving force is near the natural frequency of
the system.

Each curve shows the amplitude A for an oscillator subjected to a driving force
at various angular frequencies w,. Successive curves from blue to gold represent
A successively greater damping.

5Fmax/k B
A lightly damped oscillator exhibits a sharp
4Fmax/k ~ resonance peak when w, is close to w (the
natural angular frequency of an undamped
oscillator).
3Fmax/k B
Stronger damping reduces and broadens the
2Fmax/k | peak and shifts it to lower frequencies.
Fmax/k If b = |2km, the peak disappears completely.

wd/w

Driving frequency w, equals natural angular
frequency w of an undamped oscillator.
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Car shock absorbers - Damped oscillations

Upper cylinder attached
to frame of car:
remains relatively stationary

..... -,
------
- e
o .

~ Piston

~Viscous
fluid

Pushed down™., ;

Lower cylinder attached
to axle and wheel:
moves up and down



Forced oscillations and resonance
Structural Failure

Nov 7, 1940
The Tacoma Narrows Bridge suffered spectacular structural failure

Wind driven osc - too much resonant energy. Too little damping
https://www.youtube.com/watch?v=nFzu6CNtqgec




Simple Harmonic Oscillator (SHO)

Real Space Phase Space




Pendulum

frictionless pivot

amplitude . 8
. \massless rod

bob's ™~ __ .
trajectory e massive bob
equilibrium
position



Simple Pendulum

72




Two pendulums — same natural freqg
Coupled on wire




Christian Huygens First Pendulum Clock
1656




US Time Standard 1909 to 1929

Pendulum is in low pressure vessel

NBS — National Bureau of Standards — now NIST (Natl Inst Sci and Tech)
Riefler regulator




Vacuum Pendulum — 1 sec / year!!
Synchronized to second pendulum clock




Foucault Pendulum 1851

Precession of Pendulum
Showed Earth Rotates




Seconds Pendulum — 2 sec period
Used to Measure Gravity




