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Optimization for Laser-Propelled Spacecraft at All Launching Times 
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In the DE-STAR lab, we propose to use phased laser array with photon propellant in order to achieve  
significantly higher speed for the spacecraft. During the simulation, the laser is sometimes turned off to 
avoid cancellation of force or acceleration. However, if we shut off the laser accurately, the duration rises 
and drops even when the launch time is altered slightly, which makes the real implementation difficult. In 
this paper, we optimize the algorithm, modifying the craft’s orbit to maximize the propelling force. As a 
result, we stabilize the chaotic outcomes and minimize the time of transit for the craft to reach a target in 
space. 
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I. INTRODUCTION 
After the New Horizons brought back first high 

resolution photo of Pluto in July, 2015, topics on space 
mission became a popular focus of conversations once 
again. However, in real life, without the futuristic 
technologies we read in science fictions, the speed of 
launched spacecrafts and the time span of these projects 
posed problems for human observations and studies due to 
the vastness of the universe. 

Therefore, in our lab, we propose to use a laser array 
instead of conventional fuel to propel the craft by shooting 
the photons onto the sail connected to the craft. The laser 
system we used is called DE-STAR, which stands for 
Directed Energy Solar Targeting Asteroids and 
exploRation [1]. Indicated by the name, the DE-STAR laser 
is solar powered, so the the energy system is sustainable. 

The essential reason for using a laser is the significant 
potential speed. To measure the scale of efficiency 
improvements, we compare the simulation results of DE-
STAR 4 system (see Figure 1) to real data collected from 
the Voyager 1 (see Figure 2), which is the spacecraft that 
has traveled the farthest in universe. By comparing, we see 
that although it took Voyager 1 roughly 35 years to go 
beyond the Solar System, a 100kg craft propelled by DE-
STAR 4 laser can reach that same distance in roughly 100 
days. 

Although the progress is impressive, the algorithm is still 
problematic when reacting to the changes in launch time. 
While the graph in Figure 3 shows an unpredictable and 
unclear trend, it reveals that when the launch time is altered 
slightly, the duration for the craft to arrive at the target 
distance rises and drops sharply, and without a perceivable 
pattern. However, pattern in the graph do exist in the graph 
but difficult to evaluate due to the interference of noise, 
which we plan to eliminate through the process of 
optimization. 

This interferences is the result of the uncontrollable 
differences between the positions of the craft and the laser 
at the resonance point. The two objects are constantly at a 

significant distance from each other but are in an optimal 
position when they converge at the overlap region of their 
orbits (see red arrow in Figure 4). 

FIG. 1. The simulation results of craft propelled by DE-STAR 4, 
one of the DE-STAR system with 10km optic. 

FIG. 2. Time and speed of the Voyager 1[2], one propelled by 
conventional fuel. 

!  

FIG. 3. Change of duration and approach speed over launch time 
of a 1g craft propelled by a 1m optic laser with 0.8MW power. 

Simulation results for DE-STAR

Craft Mass (kg) 1 10 102 103 104

Days to 1 AU 0.3 1 3 10 30

Speed Compare to c 4% 1.2% 0.4% 0.15% 0.05%

Data on the Voyager 1

Launch Time Out of Solar System Speed Speed Compare to c

1977 2012 17km/s 0.006%
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!  
FIG. 4. Optimization caused by convergence at resonance point 
with a 1g craft propelled by a 3.24MW laser. 

!  

FIG. 5. The Keplerian Orbital Elements Diagram [3] 

II. DECIDING BEST TIMING 
To optimize the orbital trajectories, we add a new section 

of code to our original algorithm. It functions as the 
optimizer. In this part, the optimizer reconsiders the time to 
turn off laser when it senses that the laser will be off for all 
time before the craft arrived at the resonance. 
Consequently, when the laser shut-off time is altered, the 
speed of the craft will be altered upon that, and the duration 
for the craft to reach the resonance is modified as well.  

This duration is more critical in our algorithm since it 
acts as an indicator to check if the laser and the craft can 
reach the resonance at the same time. 

!  
(1) 

Equation (1) is essentially what the optimizer is doing as 
lines of codes. The left side of equation (1) represent the 
time 𝛥Tcraft that the craft need to get to the resonance point, 
and the right side is the laser counterpart. However, as 

demonstrated in Figure 4, the craft trajectory is longer than 
that of the laser. Therefore, on the right side of the equation 
(1), 𝛥Tlaser stands only for the duration for the laser to hit 
the resonance the first time. Normally, the craft will not be 
around at resonance during the laser’s first hit at it, so the 
laser keeps orbiting the Earth for n more periods, each one 
taking P amount of duration. 

III. OPTIMIZER’S DECISION 
The optimizer decides the best time to turn off laser 

based on its calculation and decision. In doing that, we need 
to set the orbit to our reference plane so the later processing 
can be easier since the Earth is the origin in the reference 
coordinate plane. 

We rotate the orbit along x, y, and z axises to reduce three 
orbital elements (see Figure 5 for visual expression): 

1. Inclination 
2. Longitude of ascending node 
3. Argument of perigee 
These three angles can be found by using predefined 

function in the algorithm when we input the current 
position and velocity along with time in JDE units. 

After the orbit is set to the reference plane, we calculate 
the true anomaly directly through the object's position, 
using generic elementary numeric function arctan. 
However, it turns out that the perigees of the craft and the 
laser are not exactly the same (the x-axis is pointing to 
perigee of each orbit) in a way that we need to adjust the 
true anomaly of the laser with respect to that of the craft 
since the craft is eventually the object we care about. 

After this adjustment, the x-axises point to a same 
direction that any position has a same coordinate in either 
the laser or the craft plane (symbol reference see Figure 5): 

!  

Before getting to 𝛥Tcraft and 𝛥Tlaser in equation (1), two 
more elements are required. We find them by using 
following equations: 

!  

(2) 
In equation (2), e represents the orbit eccentricity and θ 

represents the true anomaly. We use this to find E, the 
eccentric anomaly.  

!  
(3) 

E and e in equation (3) represents the same value as those 
in equation (2). To find mean anomaly value M, we plug 
equation (2) into equation (3) to find mean anomaly.  

Due to the property of mean anomaly, we get the 
percentage of time used in one period. Subtracting that 

ΔTcraft   =   nP   +   ΔTlaser

Adjusted Laser True Anomaly =
θ laser - [(ωlaser + Ω laser) - (ωcraft + Ωcraft)]

E = arctan e+ cosθ
(1− e2 )× sinθ

M = E - e sin E



OPTIMIZATION AT ALL LAUNCHING TIMES RMP 2015

value from 1, we have the percentage of either of the 𝛥T, 
from equation (1), in one period ready. When multiply the 
resulting percentage with orbit period, we have 𝛥T. 

All the elements in equation (1) are then ready except for 
n, which stands for the number of periods that the laser 
orbits before the craft comes back. While the left side of 
equation (1) is then a fixed value, we use a loop to find 
which n value returns a closest right side value to the left 
side value. 

With n value found, the process comes to an end where 
the optimizer starts to decide which is the best time to turn 
off laser. We provide the optimizer with all the previous 
positions and velocities in current orbit and it runs a loop to 
pick one of them that will allow the left and right side of 
equation (1) have the smallest difference, or even equal, 
although the chance is infinitesimal. In this process, n value 
is already found in previous calculation, and thus is a fixed 
constant during the loop.  

At the end, the best position and velocity are found, so 
the system will match these two vectors with time, and 
terminate the optimizer after returning the best time to turn 
off laser. 

IV. INSTRUCTIONS FOR THE 
OPTIMIZER 

Although the optimizer is installed successfully in the 
algorithm and should function as expected, there is a last 
part of the optimization process. Using the optimizer and 
considering cost of speed is also critical in using the 
optimizer. It seems clear that using the optimizer every 
single time before the laser-off will backfire, because too 
many adjustments are added onto the original orbit. 
Therefore, prior to the final simulation results, we set up so 
far 6 inputs adjustable for users. They function to instruct 
the optimizer how close the two objects should be at the 
resonance point decided by the optimizer, how far back/
forward the optimizer is allowed to choose its best point, 
when is it allowed to work, how much it should be shifted 
in order to work the best with the laser, and how much the 
orbit is allowed to be modified. 

With all these added as inputs, the optimizer works better 
that the users can modify the simulation orbit according to 
distinctive purposes. 

V. RESULTING SIMULATIONS 
Graphic 

As an outcome, our optimizer provides improvements to 
the efficiency of the orbital trajectories. Examining the left 
column of Figure 6, which are graphs generated by the 
previous algorithm, and comparing them with those in the 
right column of Figure 6, simulation results after the 
installation of our optimizer, there are three major progress 
in the orbits: 

! !  
  (a.i)                                      (a.ii) 

    ! !  
(b.i)                                      (b.ii) 

! !  
(c.i)                                       (c.ii) 

! !  
(d.i)      (d.ii) 

FIG. 6. Simulation results with left column being unoptimized 
cases and the right one being the optimized: (a) Orbital trajectory 
of a 10g craft propelled by a 1.93 MW laser with 1m optic in 50 
days after launching. (b) Durations and approach speeds of a 
0.1kg craft propelled by a 4MW laser with 10m optic when target 
distance increases from LEO to GEO and above. (c) Durations 
and approach speeds of a 1g craft going from LEO to GEO 
propelled by a 1m optic laser when laser power increases from 1 - 
4MW. (d) Change in durations and approach speeds over change 
of starting time of a 1g craft propelled by 2MW laser with 1m 
optics. 

1. It forces the craft into a new orbit when situations are 
allowed, so the craft can be sent accurately out to 
escape the Earth’s gravity (see Figure 6.a). 



OPTIMIZATION AT ALL LAUNCHING TIMES RMP 2015

2. When the target distance extends to a certain degree, 
the optimization starts to stabilize and shows a constant 
advantage over the previous algorithm (see Figure 6.b). 

3. The utilization of optimizer smooths out the effect of 
laser power on duration, so when the laser power 
increases, the duration shows a exponential-similar 
decrease (see Figure 6.c). 

4. Even though the starting time changes, there is a long 
period of formality such as the flat part of the graph in 
Figure 6 d.ii., while the unoptimized counterpart shows 
chaos in the left column. 

Summarizing the 4 improvements on the orbital 
trajectory, we find that the installed optimizer successfully 
stabilize the originally outcome when launch time varies. 

Data 
To understand how much out optimizer can improve the 

trajectory each time the craft is launched, we use the 
definition of standard deviation to interpret the status of the 
before and after trajectories resulted from simulation. 

In Figure 7, z value refers to the improvements in  the 
optimized orbits. Comparing the orbit with and without the 
optimizer in every short amount of time before the craft 
reaches target distance, the z value shows that over 68% of 
the time that the optimizer improves the orbit when z ≥ 1, 
and over 95% of the time when z ≥ 2. In the three cases 
shown in Figure 7, the trend of improvement shows that we 
have a great amount of confidence in our optimizer that it 
can effectively optimize the orbital trajectory of the craft at 
all launch time. 

VI. FUTURE DEVELOPMENTS 
Due to a variety of unknown matters and uncertainties 

out in the universe, simulation results of space mission in 
first stage of preparation often turn out chaotic and 
unfriendly to real implementation. The advantage of our 
optimizer in this stage is the stabilization added to the 
chaos, cleaning away unpredictable noises when reaching 
to the optimizations. Comparing to the previous algorithm, 
the newly developed optimizer effectively provide 
convergence for the laser and the craft at the resonance 
point through calculation, so the optimization became not 
so dependent and sensitive upon slight changes in launch 
time. 

However, there are still noises, and also in some cases, 
without optimizer returns better results than that given by 
the presence of the optimizer. Such as the area where the 
red arrows are pointing to in Figure 8, without the 
optimizer, the pointed part shows a relatively stable and flat 
pattern where durations are kept low, and in the same area 
in the right graph with optimizer, the pointed area shows 
relatively higher chaos and unpredictable trend. 

Thus to conclude, our level of confidence in whether our 
optimizer will provide a better result is still uncertain.This 
means that the possibility of getting worse results with the 
optimizer still exists in the simulation, and we are not yet 
able to tell when will that occur. As an extension of 

designing and installing the optimizer, the proper 
implementation of the optimizer will be our future topic. 
Currently, we have set up a list of inputs that will help us 
control the performance of the optimizer, and that list will 
probably be extended in the future. Also, to find out this 
reason of ineffectiveness of the optimizer, we will first use 
statistic analysis to find out whether or how much the 
trajectory is optimized and improved. From that, we should 
be able to start seeing some pattern and work on perfecting 
our optimizer. 

FIG. 7. Improvements in orbital trajectories of a craft propelled by 
different lasers. Mean time calculated based on time of transit that 
a 1g craft needs to go from LEO to GEO when launched at 
various times. 

!  

!  
FIG. 8. Change of duration and approach speed of a 0.1kg craft 
propelled by 9.5MW laser with 0.1km optics over changes in 
launch time. Top: without optimizer. Bottom: with optimizer. 

Improvement Calculation

1.93MW 
laser

2MW 
laser

3MW 
laser

Unoptimized Mean Time 3.50 days 3.68 days 1.56 days

Optimized Mean Time 2.08 days 1.86 days 1.19 days

z value 4.84 2.01 8.98
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