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ABSTRACT

This paper analyses the nature and feasibility of using directed energy to propel probes through space at rela-
tivistic speeds. Possible mission scenarios are considered by varying the spacecraft mass, thickness of the sail and
power of the directed energy array. We calculate that gram-scaled probes are capable of achieving relativistic
speeds and reaching Alpha Centauri well within a human lifetime. A major drawback is the diffraction of the
beam which reduces the incident power on the sail resulting in a terminal velocity for the probes. Various notions
of efficiency are discussed and we conclude that directed energy propulsion provides a viable direction for future
space exploration.
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1. INTRODUCTION

For more than half a century humans have been on the quest to further space exploration. So far, all attempts
to explore the vast expanse of space have relied on chemical propulsion. Rockets powered by combustion are
extremely inefficient and need to carry massive fuel payloads. If we continue to follow in the footsteps of
chemically powered rockets, intersteller exploration will be a hopeless endeavour. It has recently been proposed
by Lubin,1 and others23 that space travel using directed energy propulsion could be the next leap in human
space exploration. With the rapidly developing technological advancements in directed energy and silicon wafer
technology, one can envision a single photon driver sending out an armada of wafer probes.4 For a sufficiently
powerful directed energy source and small wafer probes, relativistic speeds can be reached within a matter of
minutes. This technology could allow the human race to study other star systems within a human lifetime and
improve our understanding of the cosmos.

In this paper we consider some theoretical aspects of relativistically propelled spacecraft. Using the conser-
vation of momentum we find the rate at which the spacecraft moves. Diffraction effects of the laser are also
considered and shown to be the limiting factor in the maximum velocity a spacecraft can reach. We also quanti-
tatively demonstrate that directed energy propulsion is scalable, efficient and is likely to be the next step in our
never ending quest for space exploration.

2. METHODOLOGY

Lubin1 outlines the DE-STAR (Directed Energy System for Targeting of Asteroids and ExploRation) scale for
classifying the size and power of directed energy arrays. Apart from it’s applications in planetary defence5,6

directed energy arrays can also be used to propel spacecraft at relativistic speeds. In particular, this paper
primarily refers to the DE-STAR 4 array which is a square array, 10 km on a side with a power output of 70 GW.
Consider such an array emitting a stream of photons of wavelength λ which strike a sail moving at a velocity
v(t). In the regime where diffraction effects are small and the spot size of the laser beam is less than the size
of the sail, conservation of momentum enables us to find relationship between v and t. In the frame where the
DE-STAR is at rest (we call this the ground frame), the momentum of each emitted photon is given by pi = h

λ .
In the sail’s frame this photon is observed to have a Doppler shifted wavelength λobs = λγ (1 + β) and is emitted
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with the same wavelength as it was incident with. There is a further factor of Doppler shift associated with
transforming the reflected the photon from the sail’s frame to the ground frame. λem = λγ2(1 + β)

2
.

pi =
h

λ
pf = −h

λ

(
1− β
1 + β

)
(1)

Assuming the DE-STAR has a power P and emits photons at a rate n0. The rate at which photons are
incident on the sail (ni) is reduced due to the relative motion between the sail and the array; ni = n0(1− β).
Since the rate at which photons strike the sail decreases with velocity, we also expect the impulse imparted on
the sail to decrease with velocity (and time). Let nf be the rate at photons bounce off the sail after reflection.
Due to the reflectivity (α1) of the sail, nf = α1ni. The rate of change of the photons momentum is given by:

∆pphoton
∆t

= nfpf − nipi = −hn0 (1− β)

λ

[
α1

(
1− β
1 + β

)
+ 1

]
(2)

By taking ∆t to be very small we can approximate eq.2 by a continuous time derivative. The quantity hcn0/λ
can be interpreted as the rate at which energy is expelled from the DE-STAR. By definition, hcn0/λ = P and
our results can interpreted in terms of the power emitted by the laser array. Since momentum is conserved in
the DE-STAR spacecraft system, we can say:

dpphoton

dt + dpsc
dt = 0

dpsc
dt

=
P

c
(1− β)

[
α1

(
1− β
1 + β

)
+ 1

]
(3)

The relatvivistic momentum for the spacecraft at a given time is psc = mv (t) γ (t). Differentiating this and
plugging into eq.3, we find:

mβ̇γ3 =
P

c2
(1− β)

[
α1

(
1− β
1 + β

)
+ 1

]
(4)

Equation.4 is a differential equation governing how the velocity of the spacecraft increases as a function of
the power output. In the special case of a perfectly reflecting sail at all incident wavelengths (α1 = 1), eq.4
simplifies considerably.

β̇ =
2P

mc2γ3

(
1− β
1 + β

)
(5)

Equation.5 can be integrated to yield a closed form expression relating β and t. The constant of integration
is chosen such that the spacecraft starts at rest at t = 0.

t =
mc2

6P

[
(1 + β) (2− β) γ

(1− β)
− 2

]
(6)

Equation.6 gives us the time it takes the spacecraft to get to a certain velocity. As consistency check, it is
helpful to examine what happens in the limit where β << 1. The time taken to reach a certain velocity to first
order in v

c is t = mcv
2P . In the non-relativistic limit, the force due to radiation pressure is F = 2P

c . Combining
these two, the small velocity limit of equation.6 can be expressed as:

mv = Ft (7)

In this non-relativistic limit, we recover the Newtonian equation of impulse for radiation pressure acting on
a mass m for a time t. This is expected since our analysis of this system was based upon momentum transfers
between the photons and the sail.

For a given mass and power of the array, inverting eq.6 results in a plot of velocity of the probe as a function
of time.
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Figure 1: Velocity of a 1 gram probe propelled by a 70 GW array as a function of time as measured by an
observer in the ground frame. Relativistic effects become significant very quickly. In a little over 10 minutes, the
probe is traveling at half the speed of light. By the fourth day, the probe is moving at more than 99% the speed
of light. The naive non-relativistic calculation is bad approximation for the large velocities the probe attains.

These numbers are unfathomable by today’s chemically powered rockets. Traveling at this rate, the probe
will reach Proxima Centarui in under four and a quarter years in the Earth’s frame of reference. In considering
the general problem of DE-STAR array propelling a spacecraft forward, the above analysis is incomplete since a
key issue has been left out; the diffraction effects of the laser.

3. SAIL OF FINITE SIZE

The calculations until now have only been valid for a regime in which the spot size of the DE-STAR is smaller
than the size of the sail. At larger distances, the spot size of the sail increases due to diffraction thus the sail
doesn’t receive all the power from the DE-STAR. A fourth generation DE-STAR emitting light at a wavelength
of 1054 nm with a side length of 10 km has a beam divergence given by:

θ =
2λ

d
≈ 2× 10−10rad (8)

These spacecraft are expected to reach distances of over a light year. At a distance of a light year, the sail
size to catch the entire DE-STAR beam would be on the order of a million meters. Clearly, this is unrealistic
and the situation where the spot size is larger than the reflector must be considered. Each probe comprises of
a sail of mass ms attached to a spacecraft of mass m0. Given the rate at which technology is improving, it is
modest to assume a reflector 1 micron in thickness made out of a material with density 1.4 g/cc. Such a reflector
having a mass of 1 g, would be 85 cm on a side. Let L0 be the maximum distance at which the spot size of the
DE-STAR fully illuminates a sail of side length D.

L0 =
dD

2λ
(9)
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At any distance x, where x > L0, the laser spills beyond the area of the sail and the power incident on the sail

is reduced by a factor of
(
x
L0

)2
. Equation 5 is only valid when x < L0. In general, the motion of the spacecraft

will be determined by eq.10.

β̇ =


2P

mc2γ3

(
1−β
1+β

)
x < L0

2P
mc2γ3

(
1−β
1+β

) (
L0

x

)2
x > L0

(10)

When x < L0, the acceleration depends only upon the velocity and a closed form solution of t(β) can be
obtained. When x > L0, the acceleration depends on both the velocity and the position. This results a nonlinear
second order differential equation and finding a closed-form solution for x(t) is difficult.

Instead, it is insightful to find how the velocity varies with distance by rewriting v̇ = dv
dxv and integrating to

find a relationship between v and x.

2β − 1

3γ(1− β)
2 +

1

3
=

2P

mc3
x (11)

Equation.11 is only valid in the x < L0 regime. The constant of integration has been chosen such that at
x = 0, v = 0. Consider a 2 g probe consisting of a 1 g spacecraft and a 1 g sail under constant illumination
by a 70 GW DE-STAR. From eq.9, L0 ≈ 4 × 109 m. To put these distances in perspective, the distance to
Proxima Centauri is 10 million times more than L0. If the spacecraft wants to get there, it spends almost all it’s
travel time in the x > L0 regime. From eq.11 we find that under constant illumination from a 70 GW array, the
velocity of the spacecraft at x = L0 is β0 = 0.13.

By the time the spot size equals the sail size, the spacecraft is already moving at a fairly relativistic speed of
0.13c. In order to further analyze the spacecraft’s motion, the x > L0 regime needs to be considered. Integrating
and using the condition that at x = L0, β = β0, we get a relation between β and x in the x > L0 regime.

1− 2β

3γ(1− β)
2 =

2PL2
0

mc3x
+ 0.31 (12)

From eq.12, we find that as x → ∞, β∞ = 0.18. The maximum velocity that this spacecraft can reach is
0.18c. The instant the spacecraft enters the x > L0 regime, the incident power on the sail decreases quadratically
resulting in a terminal velocity for the spacecraft. The effect of diffraction is even more hindering the larger the
spacecraft. Consider a 2000 kg probe consisting of a 1000 kg sail 850 m on a side and a 1000 kg spacecraft. When
the spot size equals sail size at a distance of L0 = 27 AU, the velocity of the spacecraft is 0.0046c. The terminal
velocity of this spacecraft is 0.0064c. The larger the spacecraft, the lower it’s terminal velocity. A spacecraft’s
velocity is limited by the velocity it can attain before entering the x = L0 regime. Thus we see that directed
energy propulsion is heavily diffraction limited.

3.1 Terminal velocity in non-relativistic limit

In the non-relativistic limit, eq.10 reduces to:

mv̇ =

{
2P
c x < L0

2P
c

(
L0

x

)2
x > L0

(13)

The same approach as before to find v(x) in the two different regimes yields:

v (x) =


√

4P
mcx x < L0√

4PL2
0

mc

(
2
L0
− 1

x

)
x > L0

(14)
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When at infinity, the maximum velocity that can be reached is given by:

v (∞) = vmax =

√
8PL0

mc
=
√

2v0 = 1.414v0 (15)

For massive spacecrafts that don’t reach relativistic speeds before entering the x > L0 regime, eq.15 is a very
good approximation. Over 70% of the spacecraft’s terminal velocity is reached before x = L0. Thus, optimizing
spacecraft speed is thus a matter of maximizing the speed attained before diffraction effects start becoming
relevant.

3.2 Optimizing spacecraft design

Assume a spacecraft of mass mo is to be accelerated as fast as possible, what is the optimum sail size to maximize
velocity? On one hand the bigger the sail, the more time the spacecraft spends in the x < L0 regime. However,
the spacecraft is also more massive so it’s acceleration is reduced. Letting x = L0 in eq.11:

2β0 − 1

3γ0(1− β0)
2 =

2P

mc3
L0 −

1

3
(16)

It can be shown that the left hand side of eq.16 monotonically increases with β0. Thus, maximizing β0 is
equivalent to maximizing the right hand side. Define g such that:

g ≡ 2PL0

mc3
=
PdD

mc3λ
=

PdD

(mo + ρD2h) c3λ
(17)

The total mass of a probe is m0 + ms. For a sail of side length D with a fixed thickness h and density ρ,
ms = ρD2h. Maximizing g with respect to the side length of the sail yields:

∂g

∂D
=
PD

c3λ

(
ρD2h−mo

(mo + ρD2h)
2

)
= 0 (18)

This condition is met when ρD2h = mo = ms. Thus, the probe reaches its maximum velocity when the mass
of the sail equals the mass of the spacecraft.

3.3 Possible mission scenarios

Under the optimum condition of ms = m0 several possible mission scenarios for propelling various spacecrafts
can be considered. Table 1 lists a variety of missions that span 8 orders of magnitude in spacecraft mass. While
directed energy propulsion is optimal for propelling gram scaled wafer crafts at relativistic speeds of 0.2c, it also
has possible applications to for manned interplanetary expeditions in large spacecraft. For instance a 100,000
kg spacecraft capable of containing a manned crew attains a terminal velocity of 0.2% the speed of light. The
versatility and scalability of missions make directed energy propulsion an attractive prospect for future space
exploration missions. With advances in materials science and nanotechnology, it’s possible to envision sails which
are a fraction of a micron thick. For a given mass, the thinner the sail is and the larger it can be; thus spending
more time in the x < L0 regime. This is demonstrated in table 2
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Spacecraft mass (Kg) Sail size (m) t0 (s) L0 (m) β0 βmax

10−3 0.85 195 4.0× 109 0.13 0.18

10−2 2.7 1070 1.3× 1010 0.077 0.11

10−1 8.5 5950 4.0× 1010 0.044 0.062

100 27 3.33× 104 1.3× 1011 0.025 0.035

101 85 1.86× 105 4.0× 1011 0.014 0.020

102 270 1.05× 106 1.3× 1012 0.0081 0.011

103 850 5.88× 106 4.0× 1012 0.0046 0.0064

104 2700 3.32× 107 1.3× 1013 0.0026 0.0036

105 8500 1.86× 108 4.0× 1013 0.0014 0.0020

Table 1: A table of possible mission scenarios for the 70 GW DE-STAR 4 for the optimal case where spacecraft
mass equals sail mass. A micron thick square reflector made out a material with a density of 1.4 g/cc is assumed.
L0 is the distance at which the sail size equals the DE-STAR spot size. t0 is the time taken to accelerate from
rest to a distance L0. β0 is the speed of the spacecraft at L0 and βmax is the spacecraft’s terminal speed.

Sail thickness (µm) Sail size (m) t0 (s) L0 (m) β0 βmax

0.01 8.5 682 4.0× 1010 0.34 0.43

0.05 3.8 434 1.8× 1010 0.25 0.33

0.1 2.7 359 1.3× 1010 0.22 0.29

0.5 1.2 233 5.7× 109 0.15 0.21

Table 2: A 2g probe under constant illumination from a 70 GW DE-STAR under the optimal case of ms = m0.
The sail is constructed out of a material whose density is 1.4g/cc.

Another case of interest is the Breakthrough Starshot case. This involves propelling a variety of low mass
spacecraft by a 100 GW DE-STAR array. By numerically solving eq.10, a plot of the velocity of the spacecraft
with time can be generated in fig. 2.

The results in figure 2 indicate the possibility of sending spacecrafts at extremely fast speeds. By further
optimizing parameters such as using a larger, more powerful array with lighter spacecraft and thinner sails, it
is possible to reach tremendously relativistic velocities. Under these conditions in figure 3, probes with sail
thicknesses of 1 µm, 0.1 µm and 0.01 µm can reach Alpha Centauri in 25 yr, 15 yr and 10 yr respectively after
which it would take 4 years for earth to receive any transmitted data. Given these short time scales, one can
imagine interstellar exploration using millions of tiny wafer spacecraft propelled by directed energy systems.
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Figure 2: Velocity of various spacecraft propelled by a 1 km, 100 GW DE-STAR array for the optimal case where
ms = m0. We assume a micron thick reflector constructed from a material whose density is 1.4 g/cc. Although
the array is more powerful than the array in table 1, the spacecrafts in this plot archive much lower velocities
due to the larger diffraction effects. The Breakthrough Starshot case involves a more compact array thus for a
given sail, L0 is reduced by a factor of 10 compared to a DE-STAR 4. Regardless, the spacecraft manage to
reach speeds between 0.03c and 0.09c. The spacecrafts accelerate extremely quickly effectively approaching their
terminal velocity within a matter of minutes.

Figure 3: The plot shows the velocity of a 2 gram probe (m0 = ms) propelled by a 10 km, 100 GW DE-STAR
array. v(t) is plotted for different sail thicknesses. The three trajectories are identical early on when they are
all in the x < L0 regime and are completely determined by eq.6. As each spacecraft subsequently moves out the
x > L0 regime, diffraction effects become important and the spacecraft quickly approaches a terminal speed.
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4. ENERGY TRANSFER BETWEEN SPACECRAFT AND ARRAY

So far the dynamics of the spacecraft has been viewed as a consequence of the momentum transfer between the
array and the probe. Another equally useful way to view this system is an energy transfer between the spacecraft
and the array. As each photon bounces off the sail, it get’s increasing redshifted. The energy loss through the
redshift of the photons goes into the kinetic energy of the probe. This can be demonstrated quantitatively.
During any individual collision momentum is conserved.

∆psc = p̃i − p̃f = p̃i −
(
−1− β

1 + β
p̃i

)
=

2p̃i
1 + β

(19)

Where ∆psc is the change in the spacecraft’s momentum during a collision and p̃i and p̃f are the photons
momentum before and after the collision. All quantities are measured with respect to the ground frame. Any
given photon is going to transfer a small amount of momentum which causes a small change in the spacecrafts
energy. These can be approximated as differentials d

(
E2
)

= d
(
c2p2 +m2c4

)
.

dEsc = βcdpsc =
2βp̃ic

1 + β
(20)

In a similar manner, the photons energy before and after the collision can be calculated.

∆Ẽ = cp̃f − cp̃i =

(
1− β
1 + β

cp̃i

)
− cp̃i = −2βp̃ic

1 + β
(21)

The loss in the photons energy due to Doppler shift equals the gain in the probe’s kinetic energy during
a collision. When stated in this manner, this result seems almost trivial. However demonstrating this result
naturally lends itself to a discussion on the efficiency with which the photons transfer energy to the spacecraft.

The efficiency η can be defined to be the fraction of the photon’s energy transferred at each bounce.

η ≡ ∆Ẽ

Ẽi
=

2β

1 + β
(22)

As defined in eq.22, initially energy transfer is inefficient since the photons are reflected back without a
significant redshift. As the sail picks up speed, the change in wavelength increases resulting in more efficient
energy transfer to the sail. As the spacecraft approaches c, the energy transfer becomes perfect since all the
photons that strike the sail get infinitely redshifted. Marx arrived at the same result in his original paper on
interstellar travel.7 While this seems to promisingly indicate highly efficient, seemingly limitless space travel,
a critical issue has been missed; the travel time of the photons. While energy transferred per bounce becomes
extremely efficient as β → 1, the photons take increasingly longer to catch up to the spacecraft. An alternate
definition of efficiency can by defined as:

ε ≡ 1

P

dEprobe
dt

(23)

In eq.23, the efficiency has been defined as the rate of change of the probe’s energy divided by power of the
incident laser. Equation 23 is defined in terms of the ground frame and measures how much of the power emitted
by the light source goes into increasing the kinetic energy of the probe per unit time. This can be calculated
explicitly using eq.5

ε =
mc2β̇βγ3

P
= 2β

(
1− β
1 + β

)
(24)
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ε is 0 at v = 0 and v = c and is maximized at βεmax =
√

2− 1 ≈ 0.414. Thus ε can not take on a value larger
than 0.35.

This apparent inconsistency in our results stems from our differing definitions of efficiency. We showed that
the loss in energy of the photons due to redshift equals the gain in kinetic energy of the probe. Thus, a photon
striking the sail of a spacecraft moving arbitrarily close to c transfers all its energy to the kinetic energy to the
spacecaft. The situation seems to indicate the efficiency approaches 1 as v → c. However, efficiency has also
been defined in a different way according to eq.23 and these two definitions need to be reconciled.

As stated in eq.23, a possible definition of efficiency is the rate at which energy of the spacecraft is changing
at time t divided by the rate at which the DE-STAR emits energy at time t. But energy emitted by the array at
time t doesn’t instantly affect the spacecraft. At a time t and at a distance x, the spacecraft can only be affected
by photons emitted at a time t − x

c . Accounting for causality, we only examine the change in kinetic energy of
the spacecraft at time t within the light cone of the last emitted photons at a time t− x

c . This is exactly what
the definition in eq.22 corresponds to and is similar to definition of efficiency used by Simmons et al.8 Written
explicitly:

η′ ≡ The increase in kinetic energy in time dt

The total energy output by the laser in time d(t− x
c )

(25)

η′ =
dEprobe
dt

dt× 1

P
(
dt− dx

c

) =
ε

1− β
= η (26)

Thus, efficiency has been defined in 2 ways that seemingly contradict each other yet describe the dynamics
of the same system. Defining η to be the efficiency corresponds to the efficiency with which individual photons
transfer energy to the sail. This is defined locally and can be physically measured. ε can not be measured locally
by a single observer is not very physical due it’s problems with causality. Although it is nonphysical, ε can be
insightful in examining the manner in which the velocity of the energy of the spacecraft increases as seen by an
observer in the ground frame.

The illustration in fig.4 depicts the energy transfers between the array and the sail.

Figure 4: A rough schematic of the array, spacecraft and the photon column between the two (represented by
the magenta squiggles). As the spacecraft velocity increases, so does the length of the photon column behind it.
As the spacecraft approaches the speed of light, the photons take a long time to catch the sail and most of the
energy output from the array goes into elongating the column of photons rather than transferring energy to the
sail.
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5. CONCLUSION

In this paper, various aspects of directed energy propulsion were analyzed. Using momentum conservation,
we were able to find the motion of the spacecraft. The diffraction effects of the laser array placed additional
constraints since after a certain distance, only a fraction of the light from the array intercepts the sail. These
effects result in the inverse square power loss on the sail and restrict it to a maximum terminal velocity. We also
show that when the spacecraft mass equals the sail mass, this terminal velocity is maximized. Due to diffraction
effects, large mass spacecraft might never make it to relativistic speeds while gram scaled wafer probes have the
potential to reach relativistic terminal velocities. High powered arrays, light spacecraft and sufficiently thin sails
make it possible to reach extremely fast relativistic speeds. Directed energy propulsion is also an efficient way
of delivering power between the laser and the sail. Due to the effects of Doppler shift, the faster the spacecraft
travels, the more efficient the energy transfer is. However, this is a double edged sword since although a fast
moving space craft is efficient, the flux of photons on the sail is reduced.

Future work is needed on finding ways to improve the efficiency of energy transfer. One way called ’photon
recycling’ involves repeatedly bouncing the emitted photons between the sail and array to maximize the fraction
of the photon’s energy transferred to the sail. Photon recycling is useful in the initial stages of flight when the
photon travel time between the sail and array is small. As the spacecraft moves further and faster, it becomes
less useful. More work also needs to be done to take into account sources of drag such as interstellar dust that
a spacecraft might encounter while traveling relativistically through space.

From the analysis in this paper, we conclude that that directed energy systems for wafer-craft propulsion is a
viable solution for unmanned interstellar exploration. While the construction of a 10 km space based laser might
seem far fetched today, it’s possible that technology advances to a point where this might become a reality.
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