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ABSTRACT 

For interstellar missions, directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds.  Spacecraft 
propulsion is provided by a large array of phase-locked lasers, either in Earth orbit or stationed on the ground.  The 
directed-energy beam is focused on the spacecraft, which includes a reflective sail that propels the craft by reflecting the 
beam.  Fluctuations and asymmetry in the beam will create rotational forces on the sail, so the sail geometry must 
possess an inherent, passive stabilizing effect.  A hyperboloid shape is proposed, since changes in the incident beam 
angle due to yaw will passively counteract rotational forces.  This paper explores passive stability properties of a 
hyperboloid reflector being bombarded by directed-energy beam.  A 2D cross-section is analyzed for stability under 
simulated asymmetric loads.  Passive stabilization is confirmed over a range of asymmetries.  Realistic values of 
radiation pressure magnitude are drawn from the physics of light-mirror interaction.  Estimates of beam asymmetry are 
drawn from optical modeling of a laser array far-field intensity using fixed and stochastic phase perturbations.  A 3D 
multi-physics model is presented, using boundary conditions and forcing terms derived from beam simulations and light-
mirror interaction models.  The question of optimal sail geometry can be pursued, using concepts developed for the 
baseline hyperboloid.  For example, higher curvature of the hyperboloid increases stability, but reduces effective thrust.  
A hyperboloid sail could be optimized by seeking the minimum curvature that is stable over the expected range of beam 
asymmetries. 
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1. INTRODUCTION 

1.1. Background 
Deep space missions, such as Voyager 1 (17.2 km/s) and New Horizons (16.26 km/s) are among the fastest 

human-made objects in existence.  Final velocities of such vehicles are attained by a combination of propellant-driven 
boosters and gravity assist maneuvers.  While these velocities are remarkable, Voyager 1 would still require 74 000 years 
to reach Alpha Centauri at its current velocity.  For interstellar missions, directed energy is envisioned to drive wafer-
scale spacecraft to relativistic speeds.1-14  The spacecraft would include all mission components imbedded in a wafer, 
such as power, laser communications, photon-thruster or micro-reaction wheel attitude control system, imaging and other 
sensors.  The driving force is provided by radiation pressure from a large array of phase-locked lasers, either in Earth 
orbit or stationed on the ground.  The spacecraft includes a reflective sail, converting momentum from photons in the 
directed-energy beam into thrust. 

Prior studies have explored requirements for propelling a wafer-scale spacecraft with a 1 m sail to ~0.26 c; 
travel time to α-Centauri would be approximately 15 years.11-14  One critical issue with laser propulsion is attitude 
stability of the spacecraft: pointing jitter and intensity fluctuations from the laser will result in asymmetric flux on the 
spacecraft sail.15  The spacecraft design must include passive righting mechanisms that compensate for asymmetric flux, 
maintaining the sail orientation approximately normal to the directed-energy beam during the acceleration phase.  This 
paper combines models of laser phased-array beam formation with analysis of sail geometry to explore propulsion 
stability of laser-propelled wafer satellites. 
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2. SAIL GEOMETRY AND ASYMMETRIC RADIATION PRESSURE 

2.1. Passive Stability Concepts 
Sail geometry will be critical to propulsion.  In an ideal scenario, the directed energy beam would arrive at the 

sail with uniform intensity.  In this case, a flat sail would be optimal, because photons reflecting off the sail surface will 
impart a force on the sail in a direction normal to the sail surface.  A flat reflective sail with a uniform, normal beam 
would result in maximum forward thrust.  The ideal scenario of uniform intensity will never be attained, so there will 
nearly always be some amount of axial asymmetry in the force applied over the sail surface.  With any amount of axial 
beam asymmetry, a flat sail will begin to yaw, with virtually no chance of recovery.  To design a propulsion scheme that 
is robust to axial beam asymmetry, the sail geometry must possess an inherent, passive stabilizing effect. 

Sails that reflect high-energy beams are fundamentally distinct from solar sails, which exploit solar radiation 
pressure.  Solar sails are envisioned as large Mylar or foil sheets supported by a truss structure, with a tethered spacecraft 
that also serves as ballast for the sail system.  Some sail designs are mildly concave toward the radiation pressure.16-19  
For directed-energy sails, use of ballast hinders the objective of minimizing mass, and concave designs present 
insurmountable stability flaws, particularly during ~10 minute, >10 000 g acceleration phase of interstellar missions.  
Under these circumstances, convex sail designs possess good passive stability characteristics, without requiring ballast. 

For example, consider a single-branch hyperboloid.  Asymmetry in the directed energy beam would impart 
more momentum on one area of the sail than another, initiating a yaw in the direction of the higher force.  As the yaw 
increases, the incident beam angle will move farther from the surface normal in the portion of the beam with higher 
intensity, which has the effect of lowering the effective torque in the area with higher intensity.  At the same time, the 
incident angle will move closer to the surface normal in the portion of the beam with lower intensity, which has the 
effect of increasing the effective torque in that area.  Therefore, changes in the incident beam angle due to yaw have the 
potential to passively counteract axial asymmetry of pressure.  This fundamental property is illustrated in Fig. 1.  This 
section explores passive stability properties of a 2D hyperbola under conditions of axially asymmetric pressure. 
 

2.2. 2D Hyperbolic Segment 
The parametric form of a hyperbola segment over a symmetric domain can be written as: 

∙ tan 			 0 	
cos

0 ∈ , 		 (1) 

For parameter values a = 1, b = –1 and d = 1, a (non-dimensional) hyperbola (lower branch) is shown in Fig. 1.  The 
value of c is chosen to place the center of mass of the curve at the origin.  The directed-energy beam is envisioned as 
vertical rays impinging on the top surface of the hyperbola.  The wafer spacecraft would be situated in the concave 
portion of the hyperbola, protected from the directed-energy beam by the reflective sail. 
 

 
Figure 1. Left: Lower branch of a hyperbola, with center of mass at the origin.  Right: The hyperbola is rotated 
about its center of mass, as might be caused by asymmetry in radiation pressure.  Inherent passive stability is 
suggested by torque redistribution in the presence of yaw, resulting from increased or decreased momentum 
transfer when the angle of incidence moves toward or away from the surface normal, respectively. 
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The force imparted to the sail by the directed-energy beam is normal to the sail surface, as a pressure.  Using the 
parametric form of Eq. (1), the tangent slope is calculated from the directional derivatives of the hyperbola: 

			
cos

∙ sin
cos

 (2) 

The angle between a vertical incident ray and the surface tangent normal (α) is calculated using the directional 
derivatives of Eq. (2): 

		 atan atan
∙ sin

 (3) 

The torque on the sail at a given point (x, y) is calculated from the lever arm ( ) of the point, and the pressure force 
vector ( ) normal to the surface of the hyperbola at that point.  The lever arm is a vector from the center of mass 
(xcm, ycm) to the point (x, y): 

〈 , 〉 〈 ∙ tan ,
cos

〉 (4) 

With appropriate value of c selected in Eq. (1), the center of mass is at the origin.  To model spatial asymmetry in the 
directed-energy beam (to account for imperfections in phase locking of multiple sources), the impinging force vector is 
scaled as some function l(x) of lateral position in the incoming beam: 

∙ cos ∙ 〈cos
2
, sin

2
〉 (5) 

The torque magnitude is calculated from the length of the two vectors, and the angle between them: 

‖ ‖ ‖ ‖ ∙ ∙ sin acos
∙

‖ ‖ ∙
∙ sign  (6) 

The sign of the parameter value is useful for quadrant disambiguation of the arc-cosine function.  The net torque on the 
sail is the sum of torques over the entire sail surface: 

‖ ‖  (7) 

The hyperbola segment can be rotated about the center of mass, as might occur in response to asymmetric 
radiation pressure.  The standard 2D rotation matrix is applied to the parametric form to rotate the hyperbola segment 
counter-clockwise through a positive angle ρ: 

∙ tan ∙ cos
cos

∙ sin ∙ tan ∙ sin
cos

∙ cos  (8) 

Working with simple functions to describe the sail geometry (e.g., a hyperbola) supports analytic derivative forms.  The 
directional derivatives and incidence angle for the rotated hyperbola are: 

		
∙ cos ∙ sin ∙ sin

cos
∙ sin ∙ sin ∙ cos

cos
 (9) 

		 atan
∙ sin ∙ sin ∙ cos
∙ cos ∙ sin ∙ sin

 (10) 

 
Table 1. Terms used for quantities presented in this section, with associated dimension. 

Symbol Interpretation Dimension 
a,	b,	c	 Parameters of the hyperbola [length] 

s,	d	 Parametric variable for the hyperbola, and its range non-dimensional 

 Beam Incidence Angle (to surface normal) rad 

 Lever-arm vector from center of mass to (x, y) on hyperbola [length, length] 

 Radiation pressure force vector at surface of hyperbola [force/area] 

	 Angle between lever arm and radiation pressure rad 
l(x) Intensity of directed-energy beam [luminous intensity/length2] 

 Yaw angle of the hyperbola rad 

	 Torque vector acting on a point on the hyperbola [length, length] 
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2.3. Static Equilibrium 
The choice of a hyperbola for sail cross-section is based on the expectation that the design will passively 

counteract asymmetry of pressure, as a result of torque redistribution in the presence of yaw.  The sail would be 
‘balanced’ whenever the net torque over its surface is zero, indicating that the yaw angle is not being forced to change by 
the incident beam.  A necessary condition for inherent passive stability is the existence of a zero-net torque state under 
realistic conditions of pressure axial asymmetry.  As depicted in Fig. 1, the beam intensity force vector is modeled as 
some function l(x) of lateral position x.  Fig. 2 shows the net torque over a range of yaw angles for two beam intensity 
profiles.  The first curve shows net torque for a uniform beam intensity, l(x) = 1.  The graph shows a static equilibrium 
point at a yaw angle of 0.  Using the hyperbola shown in Fig. 1, and beam intensity as l(x) = 1 + 0.15x, the beam 
intensity over the right half of the hyperbola will be higher than over the left half, initially causing a clockwise (negative) 
yaw.  Under these conditions, Fig. 2. illustrates the existence of a static equilibrium point at a yaw of ρ* = –0.2 radians.  
This result is consistent with inherent passive stability, since the initial negative yaw will push the spacecraft orientation 
toward the static equilibrium point that was originally induced by asymmetric pressure.  Dynamic equilibrium analysis is 
discussed in §2.4. 
 

 
Figure 2. Analysis of static equilibrium points.  The top curve confirms a static equilibrium at zero yaw angle 
under conditions of axially symmetric torque.  The bottom curve suggests that negative yaw induced by 
asymmetric pressure will push the spacecraft orientation toward a static equilibrium point, consistent with the 
potential for inherent passive stability.  Dynamic equilibrium analysis is presented in §2.4. 

 
 

2.4. Dynamic Equilibrium 
The dynamic stability of each static equilibrium point must be analyzed, for example using an appropriate 

energy method.  A candidate Lyapunov function is identified using net torque: 
∙
2

∙  (11) 

Based on Fig. 2, consider the point ρ* where net(ρ*) = 0, and for angles |ρ – ρ*| < ρcritical that keep the hyperbola 
directrices from passing through horizontal.  The hyperbola structure is locally stable at ρ* whenever ∗ 0.  Note 
that damping could also be introduced to the physical system, for example by incorporating photon-thruster or micro-
reaction wheel attitude control on the spacecraft.  The topic of damping will be considered in future work. 
 

3. DIRECTED-ENERGY BEAM MODELS 

3.1. Far-Field Beam Model: Magnitude of Asymmetry in the Beam 
Thus far, analysis of sail stability has been presented in general terms for a specific sail geometry, without 

considering realistic forces on the sail, or the magnitude of asymmetry that might be expected in the directed-energy 
beam.  In this section, a model is presented for beam formation by a coherently-combined laser array, based on previous 
work.20  The model is suitable for estimating beam asymmetry, under some assumptions about the source of phase mis-
alignment in a coherently-combined laser array.  The interference pattern and resulting far-field intensity distribution of 
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multiple emitters in a phased-array design can be determined by scalar diffraction theory.  The complex far-field 
amplitude for a flat, linear array of emitters in phase alignment is given by: 

∙
∙ ∙ ∙ 1
∙ ∙

∙ ∙ ∙ ∙ ∙  (12) 

Given the complex amplitude, the far-field beam intensity for the linear array is then: 
| |  (13) 

For a 1-D linear array, the far-field beam intensity for a square array with beam intensity Ix(θ) along one axis and Iy(ψ) 
along a perpendicular axis is: 

, ∙  (14) 

Eq. (12) assumes perfect mechanical alignment, as well as perfect frequency, amplitude and phase control for every 
emitter in the array.  A simulation was performed, based on Eqs. (12)-(14) for a 5 by 5 square array.  Fig. 3 shows 1-D 
and 2-D far-field beam patterns. 
 

 
Figure 3. Baseline simulation results for a 5 by 5 close-packed array of square emitters in phase alignment.20  
Each emitters is a 20 cm by 20 cm square (a = d = 20 cm), so total aperture is 1 m, N = 25, and the nominal 
emitter frequency is set to λ = 1.06 μm.  These results would only be attained by having perfect mechanical 
alignment and perfect frequency, amplitude and phase control of every emitter in the array. 

 
Table 2. Terms used for simulations presented in this section, with associated dimension or units. 

Symbol Interpretation Dimension, units 
λ Nominal emitter wavelength μm 
d Nominal element spacing (array pitch) μm 
θ Angular variable (viewing angle away from normal to emitter array plane) rad 
E Complex far-field amplitude V/m 
I Far-field beam intensity W/m2 
k 2π/λ μm-1 
a Aperture opening size μm 
N Number of emitters in a single dimension of an array dimensionless 

 
The model can be modified to include additive fixed and time-varying phase misalignments. such as might be 

induced by structural misalignment, mechanical vibration or thermal variations.   The complex far-field amplitude for a 
linear array of emitters with static (Ef) and time-varying (Et) phase misalignments at each emitter is given by: 

,
∙ ∙ ∙ 1
∙ ∙

∙ ∙ ∙ ∙ ∙ ,  (15) 
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For simulations, fixed phase differences are drawn randomly from a normal distribution with zero mean and a specified 
standard deviation.  Standard deviation represents the variation among fixed alignment differences, and is typically 
stated in terms of a fraction of a single cycle at the nominal emitter frequency.  Fixed alignment differences can be 
chosen randomly, since they can be viewed as un-correlated random errors.  However, time-varying terms can be both 
correlated and uncorrelated.  Vibrational modes in the structure will create phase misalignments that are correlated 
among the array emitters.  Additional perturbations are also possible, for example due to thermal changes in optical paths 
or non-linear reactions of optical elements to structural vibrations.  Some of these scenarios may result in uncorrelated 
phase misalignments, which can also be included in the model by adding a series of time-varying terms, i.e., Et (p, t) in 
Eq. (15) can be a sum representing several components. 

The simulation results shown in Fig. 4 represent a laser phased array that includes fixed phase mis-alignments 
(Ef) at each emitter with a 1σ error of λ/8.  Comparison of these results to Fig. 3 shows significant beam degradation, 
with significant power moving from the main peak to side lobes.  Also evident is a pointing shift, i.e., the main lobe axis 
is no longer aligned with the array axis, with a pointing error on the order of 1 μrad. 
 

 
Figure 4. Simulation results for a 5 by 5 close-packed array of emitters with static phase perturbations.20  Again, 
emitters are modeled as a = d = 20 cm, total aperture is 1 m, and the nominal emitter frequency is set to 1.06 μm 
(compare to Fig. 3).  Mis-alignments were randomly assigned to each emitter, with magnitudes drawn from a 
normal distribution with 1σ = 2π/8. 

 

4. THE PHYSICS OF LIGHT-MIRROR INTERACTION 

4.1. Modeling Objectives 
Flux on the sail will be immense, so it is imperative to develop a realistic model for the interaction between the 

directed-energy beam and the reflective sail.  Numerous papers describing light-matter interaction in various scenarios 
are available.21-31  Light matter interactions in increased order of sophistication can be described using classical, semi-
classical and fully quantum mechanical approaches.  In the classical approach, the light field is described by Maxwell’s 
equations, matter as a collection of simple harmonic oscillators in the dipole approximation and light-matter interactions 
are a result of resonant coupling of the light field resonantly interacting with the electric charge of the atomic system.  In 
the semi-classical approach, the matter field is quantized while the light field is represented by classical amplitudes and 
the interaction is given by the Rabi model.  In the fully quantum picture both light and matter fields are quantized and the 
interaction is specified by the Jaynes-Cummings model.32-35 

Exchange of energy and momentum occurs when light scatters from a mirror.  Assuming a closed system, the 
incident photon imparts kinetic momentum to the mirror.  The resultant mechanical motion of the mirror can be modeled 
with various degrees of sophistication, ranging from the particle collision model to the fully quantized scattering model.  
We are primarily interested in the transfer of energy and momentum from the light field to the reflecting sail.  A purely 
mechanical model is described in the next section. 
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4.2. A Baseline Non-Relativistic Model 
As a baseline approach, the directed energy beam incident on the reflective sail is modeled as a pure mechanical 

collision of rigid objects in the non-relativistic limit.  Consider an incoming photon with linear momentum p impinging 
on a mirror at an angle of incidence α and at distance d from the mirror’s center of mass, as shown in Fig. 5.  In addition 
to imparting a horizontal kick to the mirror, the reflection also causes the mirror to rotate about its center of mass with an 
angular velocity .  Conservation equations for linear and angular momenta are: 

∙ cos ′ ∙ cos ∙ ∆  (16) 

∙ sin ′ ∙ sin  (17) 

∙ ∆  (18) 

Assuming the change in angular momentum of the photon is purely extrinsic: 

∙ ∙ cos ′ ∙ ∙ cos ∙ ∆  (19) 

The mechanical energy is: 

∙ ∙ ∆ ∆  (20) 

 

                 
Figure 5. Schematic diagram of light-mirror interaction as modeled for this study. Left: A photon reflected by a 
stationary mirror.  Right: nth scattering. 

 
Table 3. Terms used for simulations presented in this section, with associated dimension or units. 

Symbol Interpretation Dimension, units 
p Linear momentum of the incident photon kg m/s 
p' Linear momentum of the reflected photon kg m/s 
pm Linear momentum of the mirror kg m/s 
α Photon angle of incidence rad 
β Photon angle of reflection rad 
ω Angular velocity of the mirror about its center of mass (c.m) rad/s 
d Length of the “lever arm” m 

cm Visual representation of the center of mass of the mirror - 
M Mass of the mirror kg 

 
Now consider a more general case, where the mirror has already rotated by  after receiving a kick from a single photon.  
For the incoming photon, the angles of incidence and reflection are transformed as α → α + θ, β → β − θ and ω = .  
With each reflection, the mirror experiences both linear and angular acceleration. 
 

4.3. Discussion of Limitations in the Mechanical Model 
While the mechanical photon collision model captures the essential mechanics of the situation, it is likely too 

simplistic to describe all of the important phenomena when a high-energy directed-energy beam strikes a reflective 
mirror.  Working toward a more complete model, the transfer of energy and momentum from a field to matter can be 
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described in terms of densities and the interaction with matter is encapsulated in by a stress tensor.  There are two forms 
of the stress tensor, the so-called Minkowski and Abraham forms, derived directly from their respective expressions for 
momentum density of light within a medium.  It is not yet clear which form is correct for the present scenario, although 
there seems to be a consensus on interpreting the Minkowski momentum as the recoil momentum of the atom interacting 
with the photon, while the Abraham momentum is interpreted as the field.  Some authors have suggested that the choice 
of description is experimentally driven, a pushing force suggests use of the Abraham form, while a pulling force the 
Minkowski form.52  A thorough description of the various arguments is available.29,38-42, and references therein  In addition, it 
may also be necessary to consider the canonical momentum of light in a dielectric to obtain a more complete picture of 
the interactions.43-45  A useful model must be consistent with at least one of these established theories. 
 

5. A 3D MULTI-PHYSICS MODEL SAIL CONCEPT 

5.1. Hyperboloid 
The preceding 2D analysis demonstrated that a hyperbola displays inherent passive stabilization properties 

under conditions of pressure axial asymmetry.  A long-term goal of this research is to build a 3D multi-physics model of 
a hyperboloid sail, incorporating boundary conditions and forcing terms based on realistic values of radiative flux, flux 
asymmetry, and light-mirror interaction described as physical models in the preceding sections.  The image in Fig. 6 
shows results from the first iteration of a COMSOL model.  The model includes a sail geometry (hyperbola), with a 
circular wafer mounted 'leeward' within the sail cavity.  At the current time, the model is 'anchored' at the center of mass, 
rather than ‘free’.  Choices for sail thickness and material properties are arbitrary, at this point.  The model in its current 
form could be used to explore rotational forces on a reaction wheel.  The current iteration has no laser; force on the sail 
is modeled as a pressure, normal to the sail surface.  The same type of function used in the 2D model was incorporated in 
the 3D model to add asymmetry to the pressure, in this case l(x) = 1+0.01x. 
 

 
Figure 6. 3D model of a conceptual hyperboloid sail.  The wafer-scale spacecraft is supported within the sail 
cavity.  Asymmetric flux is imparted to the sail, inducing a yaw.  The sail outline shows deviations from the 
unconstrained position depicted by the solid lines.  Steady-state orientation is indicative of inherent passive 
stability. 

 

6. CONCLUSIONS 

6.1. Progress to Date 
Wafer-scale spacecraft are envisioned to begin interstellar missions in low-Earth orbit, accelerated to relativistic 

speeds (>0.1 c) by a directed-energy beam pushing the spacecraft’s reflective sail.  The aim of research presented in this 
paper is to analyze the stability of reflective sail designs within the context of accelerating wafer-scale spacecraft to 
relativistic speeds.  Fluctuations and asymmetry in the beam will create rotational forces on the sail, so the sail geometry 
must possess an inherent, passive stabilizing effect.  A hyperboloid shape is proposed, since changes in the incident beam 
angle due to yaw will passively counteract rotational forces, the result of torque redistribution in response to yaw.  A 2D 
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hyperbolic cross-section was analyzed for static equilibrium, confirming the passive stabilizing effect.  A dynamic 
analysis using a candidate Lyapunov function confirms stability of the static equilibrium position.  The next goal is to 
incorporate realistic boundary conditions and forcing in the dynamic model.  A directed-energy beam far-field intensity 
model is used to model beam intensity and asymmetry at the spacecraft.  Fundamental physics of light-mirror interaction 
are adapted for the spacecraft acceleration scenario, yielding a model of basic forces on the mirror.  Simulations of the 
beam and light-mirror models provide more realistic input to a 3D multi-physics model of a reflecting hyperboloid sail.  
Initial results from a preliminary 3D multi-physics model support the conjecture of passive stability, although much 
development remains to achieve a realistic 3D simulation. 
 

6.2. Considerations for Additional Study 
As the spacecraft moves away from Earth, the beam flux will decrease asymptotically to zero, leaving the 

spacecraft to coast through most of its journey.  Final velocity will be attained within ~1 AU of Earth, depending on the 
optical properties of the laser array, requiring massive acceleration during the initial stage of the long journey.  Many 
issues related to spacecraft stability remain to be studied.  This paper considers a hyperboloid, and concludes that the 
design possesses some traits of inherent passive stability.  The hyperboloid curvature must be optimized for expected 
beam conditions, since higher curvature increases stability, but reduces effective thrust.  A hyperboloid sail could be 
optimized by seeking the minimum curvature that is stable over the expected range of beam asymmetries.  Additionally, 
sail geometry optimization could consider other shapes that could potentially be more efficient and/or stable than a 
hyperboloid.  The current beam intensity model is a far-field estimate, but it is clear that a near-field model will be 
required.46  Dynamic stability studies should consider damping forces, such as could be provided by photon-thruster or 
micro-reaction-wheel attitude control systems.  Mechanical design of the spacecraft, and material choices, will clearly 
have important effects on stability, since mechanical deformation due to structural and acoustic modes will affect sail 
shape.47-48  Flux on the sail will be immense, so imperfect reflectance will be a major issue.  Dielectric sails show 
promise.  Absorption in the sail material will result in thermal expansion, altering properties of the mechanical design.  
Thermal management will be critical.  Waste heat could potentially be recycled as a power source, e.g. for attitude 
control.  As the spacecraft accelerates to relativistic speeds, the directed energy beam will be red-shifted, so reflectance 
properties of the sail material must be considered over a wide frequency range.  Additionally, reflection from the 
relativistic sail will change character, with a significant effect on thrust.49-51 
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